
Microsoft Windows
Programmer FAQ

Frequently Asked Questions

Copyright
This document is compilation copyright © 1990-1994 by Tom Haapanen.    It may be
freely copied and/or distributed in its entirety as long as this copyright notice is not
removed.    It may not be sold for profit or incorporated into commercial products without
the author's written permission.    [Compilation copyright means that you can freely use
individual sections of this document, but any significant collection of sections is subject
to the copyright.]

Note: Revision dates for each section are shown next to the section names on each index
page!    To find updated sections for a particular date, click the Search button in
WinHelp and enter "Updated:" to see the various update dates available.

Credits
Microsoft Windows 94-03-18
Internet and Usenet 94-03-15
Software Development Kits 94-03-15
Planning for future versions of Windows 94-03-19
Windows SDK programming techniques 93-06-20
Development tool specific issues 93-01-20
Interfacing to the outside world 93-04-30
Putting it all together 93-04-30
A programmer's bibliography 93-08-13

Microsoft Windows

Windows 1.0
Windows 2.0
Windows/386
Windows 3.0
Windows 3.1 92-09-21
Windows 3.11 94-03-01
Windows for Workgroups 3.1 93-04-22
Windows for Workgroups 3.11 94-03-01
Windows NT 3.1 94-03-01
Win32s for Windows 3.1 94-03-15
Windows 4.0 ("Chicago" and Win32c) 94-03-15
Windows NT 3.5 ("Daytona") 94-03-15
Windows NT 4.0 ("Cairo") 94-03-15
Windows for Pen Computing 3.1
Multimedia Windows
Modular Windows
Win-OS/2
Chicago Q&A 94-03-18

Chicago Q&A

What is Chicago? 94-03-18
What is Cairo? 94-03-18
Why does Microsoft have multiple Windows products? 94-03-18
When will Chicago and Cairo ship? 94-03-18
What is Daytona? 94-03-18
How will Chicago make the projected ship date? 94-03-18
What if Chicago ships before Cairo? 94-03-18
What are Chicagos key benefits? 94-03-18
What different Chicago packages will be available? 94-03-18
What will Chicago be called? 94-03-18
What will happen to MS-DOS? 94-03-18
How will Chicago perform on 4 MB? 94-03-18
Will Chicago run current applications? 94-03-18
Will I need to get new device drivers? 94-03-18
Will my current applications work well on Chicago? 94-03-18
When will Chicagos new UI be ready? 94-03-18
Will the new user interface mean a lot of retraining? 94-03-18
What is Plug and Play? 94-03-18
What hardware changes does Plug and Play require? 94-03-18
Wont it take a long time for Plug and Play? 94-03-18
Is the Chicago API different from the Windows NT API? 94-03-18
Will vendors need separate Chicago and NT versions? 94-03-18
When will Chicago applications be available? 94-03-18
Is Chicago completely 32-bit? 94-03-18
How do the 16-bit components fit in? 94-03-18
Will existing networking software work with Chicago? 94-03-18
What about Netware with Chicago? 94-03-18
Will there be Chicago server version? 94-03-18
What about Chicagos portability? 94-03-18
What about systems management? 94-03-18
Will there be mobility features? 94-03-18
How will file synchronization work? 94-03-18
Will there be separate NT and Chicago SDKs? 94-03-18
What benefits are there to developers? 94-03-18
Will Visual Basic for Applications be included? 94-03-18
Will Chicago and NT use common device drivers? 94-03-18
Will WOSA services be included? 94-03-18

Internet and Usenet

Usenet 94-03-15
Usenet Windows newsgroups 94-03-15
Alternatives to Usenet 94-03-02
Windows-related mailing lists 94-03-02
Freeware and shareware by ftp
Popular Internet ftp sites 93-03-01
Using archie 92-09-21
Ftp by email
FAQs (Frequently Asked Questions) 93-02-04
More about Internet and Usenet 94-03-15
FTP archives on CD-ROM 92-09-21

Software Development Kits

Microsoft Developer Network Level 2 94-03-10
Windows 3.1 SDK
Windows 3.1 DDK
Windows 3.0 SDK
Windows NT 3.1 DDK
Windows for Workgroups 3.1 SDK 93-04-25
Win32 SDK 94-03-15
Win32 SDK for Macintosh 94-03-15
LAN Manager Toolkit 93-05-09
MAPI SDK 93-04-25
LSAPI SDK 93-04-25
ODBC SDK 93-04-25
Windows NT SNMP Toolkit 93-04-25

Planning for future versions of Windows

Application Compatibility in Future Versions of Windows 93-05-08
Preparing your application for Chicago 94-03-19
Things youll add later for your Chicago app 94-03-19

Windows SDK programming techniques

User interface and windows 93-06-20
Dialogs 93-07-30
Controls 94-02-22
Memory
GDI 93-04-25
Text and fonts 94-02-25
Kernel and low-level programming 94-02-25
OLE and DDE 94-03-19
Miscellaneous 93-05-08

User interface and windows

Activating a window without bringing it to the top 93-06-20
Animating the cursor 93-04-25
Changing the icon on the fly 92-11-04
Changing the application's language 93-01-20
Changing the restored size of a maximized window 93-01-20
Creating an initially invisible MDI child window
Drag-and-drop: File Manager and Print Manager
Drag-and-drop: generalized client 93-01-20
Drag-and-drop: generalized server 93-01-20
Forcing a window to stay fixed size or iconic
Getting the handle of the active window 93-01-20
Keeeping a window on top 93-01-20
Limiting window size 92-12-15
Right-justifying menu items
Right-justifying menu items at runtime
Trapping mouse clicks on desktop
Using status bars with MDI 92-09-15

Dialogs

Adding controls to a non-dialog window
Creating 3-D "look" dialogs 93-04-22
Doing a timeout in a dialog
Minimize button on modal dialog moves when clicked
Modifying common dialogs 93-01-20
Null dialog handles from Borland custom dialogs 93-07-30
Preventing switching away from a modal dialog
Using a dialog as your main window 92-12-18
Using Borland custom dialogs with other compilers 92-09-28

Controls

Allowing ENTER in a multiline edit control 92-09-15
Aligning multi-column listboxes 92-09-15
Changing button colors
Changing the font size in a dialog 94-02-22
Combo boxes with tab stops 93-01-20
Controlling color in Borland dialogs 93-04-30
Custom button bitmaps in Borland dialogs 92-11-15
Drawing on a dialog background 93-01-20
Hiding dialog controls
Listboxes with large amounts of data 92-11-15
Subclassing standard controls
Using a window as a modal dialog 92-12-15

Memory

Using new() in C++
Global memory owned by DLL
Determining size of physical memory

GDI

Animation 92-10-06
Animation: WAP 93-04-25
Background color
Changing palette entries in 16-color mode
DIB bitmaps 92-10-07
Speeding up WM_PAINT redraws
Using CMY colors instead of RGB 93-01-20
Using only solid colors 92-11-15

Text and fonts

Creating new fonts 93-01-20
Determining font sizes 94-02-25
Rotating fonts 93-01-20
TrueType width calculation 92-11-03

Kernel and low-level programming

Activating the previous instance 93-01-20
VxD development 94-02-25
VxD technical notes and samples 94-02-25
VxD developer documentation 94-02-25
Getting the instance handle 92-09-28
I/O ports and Windows 94-02-25
Restarting Windows 92-10-05
Rebooting the system 92-10-05

OLE and DDE

Applying OLE technology 94-03-10
OLE resources on ftp.microsoft.com 94-03-19
Using NetDDE 92-12-20

Miscellaneous

Accessing C++ classes in a DLL 93-03-40
Changing your current directory
Detecting idle time 93-05-08
Enumerating active processes 92-12-15
Extracting icons from a .EXE or .DLL
Finding the directory: application program 92-09-28
Finding the directory: initial 93-04-30
Finding the directory: system 93-04-30
Finding the directory: Windows 93-04-30
Finding the number of instances running
Multimedia RIFF file format 92-09-15
Using CARDS.DLL for your own games 93-04-30
Waiting for completion of WinExec() 93-01-20
Wsprintf and sprintf

Development tool specific issues

Borland ObjectWindows Library 93-01-20
Microsoft Foundation Classes 94-02-25
Turbo Pascal for Windows 93-01-20
Visual Basic 94-02-25
Visual C++ 94-02-22

Borland ObjectWindows Library

A dialog as an MDI child window [Borland OWL] 93-01-20

Microsoft Foundation Classes

Disabled menu choices become enabled 93-04-25
Listbox contents not available after dialog 94-02-25
Maximizing the initial window 94-02-25
Sluggish menus when menu prompts missing 93-07-15
Using CTL3D with MFC 93-04-30

Turbo Pascal for Windows

Using CTL3D.DLL with Turbo Pascal 93-01-20

Visual Basic

Accessing I/O ports 94-02-25
Allowing user interaction in tight loops 92-12-20
Animating the icon 92-12-20
Calling GetPrivateProfileString() from Visual Basic 93-04-30
Creating controls at runtime in Visual Basic 92-11-15
Disabling automatic variables in Visual Basic 1.0 93-01-20
Disabling automatic variables in Visual Basic 2.0 93-04-25
Displaying a timed About box 93-04-30
Finding previous instance of a Visual Basic application 93-05-05
Passing a structure back to Visual Basic from a DLL
Right mouse clicks on command buttons 92-12-15
Using Return to move ot the next input field 93-04-30
Using Visual Basic strings in a DLL 93-01-20
Visual Basic and Fortran

Visual C++

Memory requirements 94-02-22
Integrating external makefiles with VC++ 94-02-22
Using version control from Visual Workbench 94-02-22

Interfacing to the outside world

Communicating with DOS applications 93-04-30
Multimedia 93-04-30
Miscellaneous 93-05-08

Communicating with DOS applications

Clipboard access from DOS applications 93-04-30
Determining whether a task is a DOS task 93-01-20
Passing commandline parameters to DOS applications 93-01-20
Passing a pointer to a DOS application or TSR 92-09-15
Starting a Windows application from a DOS session 92-09-15

Multimedia

Checking for a sound card 93-04-30
MIDI file format 92-10-07
Playing sounds from Visual Basic 92-09-28
RIFF (DIB, MIDI, RTF and WAV) file formats 93-01-20
Using an accurate timer 92-10-06

Miscellaneous

Program Manager DDE interface 93-04-30
Program Manager group file format 93-05-08
TWAIN interface specifications 93-04-30

Putting it all together

Compiling and linking 93-04-30
Debugging 93-05-08
Resources and resource tools 94-02-22
Screen savers 93-04-30
Documentation and help 93-04-30

Compiling and linking

Emulator vs. alternate floating-point math
Emulator floating-point: corrupted code segments
Exporting CDECL functions 92-09-28
Large memory model: why or why not? 93-04-30
Using STRICT with windows.h 93-01-20

Debugging

Debugger stopping at non-existent breakpoints 93-04-30
Debugging a DLL with CodeView 93-04-30
Dr. Watson log files 93-05-08
Programmer's WorkBench and tab characters 92-09-28
Turbo Debugger and Windows 3.1 92-09-28
Turbo Debugger video configuration 92-09-14

Resources and resource tools

Borland C++ Windows tools and Windows 3.1 92-09-28
Building a DLL with Zortech C++ 92-11-15
Extracting resources from an .EXE file 93-01-06
Help compiler runs out of memory 94-02-22
Help development tools 94-02-22
Linking fonts into a .FON file
Running out of system resources in Visual Basic 92-09-21
Tracking down unfreed resources 92-11-15

Screen savers

Creating a Windows 3.1 screen saver 93-04-30

Documentation and help

Adding bitmaps to helpfiles
Bullets (and other special characters) in helpfiles 93-04-30
Screen Snapshots

A programmer's bibliography

Windows 3.1 SDK references 93-04-30
Windows 3.0 SDK references
Win32 (Windows NT) API references 93-04-30
Windows user interface guidelines
Microsoft Technical Notes 93-08-13
Programming guides: general 93-07-30
Programming guides: class libraries 93-01-22
Programming guides: device drivers and internals 93-07-30
Programming guides: Visual Basic 93-04-30
Programming guides: macro languages 93-01-22
Magazines 92-09-21
Microsoft Developers' Network 93-04-30
Magazine source code availability 93-04-30

Credits
The author may be contacted by the following means:

Internet: tomh@ metrics.com
UUCP: uunet!metrics.com!tomh
BITNET: tomh@ metrics.com
CompuServe: >INTERNET: tomh@metrics.com

Mail: Tom Haapanen
Software Metrics Inc.
22 King St. S., suite 303
Waterloo, Ont.
N2J 1N8, Canada

The Word for Windows to Windows Help conversion utility, Dr. Help, used for creating
and maintaining this document, was created by Roger Hadgraft, senior lecturer in Civil
Engineering at Monash University, Clayton, Victoria, Australia.    It can be used for
converting most Word files into WinHelp files.    Roger may be contacted as:

Internet: roger.hadgraft@eng.monash.edu.au
UUCP: uunet!eng.monash.edu.au!roger.hadgraft
CompuServe: >INTERNET: roger.hadgraft@eng.monash.edu.au

I would also like to express my gratitude to the countless people who have contributed
information to the Windows FAQs, through Usenet news, email and personal
conversations.    You know who you are: I'm grateful for your help, as this FAQ would not
be what it is without your help.

Latest versions of this FAQ are available by ftp on ftp.metrics.com (198.133.164.1) in the
directory ~/faq.

Microsoft Windows

Windows 1.0
Microsoft first began development of the Interface Manager (subsequently renamed
Microsoft Windows) in September 1981.    Although the first prototypes used Multiplan
and Word-like menus at the bottom of the screen, the interface was changed in 1982 to
use pull-down menus and dialogs, as used on the Xerox Star.   

Microsoft finally announced Windows in November 1983, with pressure from just-released
VisiOn and impending TopView.    This was after the release of the Apple Lisa (but prior to
the Macintosh), and before Digital Research announced GEM, another competing
graphical environment.    Windows promised an easy-to-use graphical interface, device-
independent graphics and multitasking support.    The development was delayed several
times, however, and the first version hit the store shelves (after 55 programmer-years of
development!) in November 1985.    The selection of applications was sparse, however,
and Windows sales were modest,

The following were the major features of Windows 1.0:
· Graphical user interface with drop-down menus, tiled windows and mouse support
· Device-independent screen and printer graphics
· Co-operative multitasking of Windows applications

Windows 2.0
Windows 2.0, introduced in the fall of 1987, provided significant useability improvements
to Windows.    With the addition of icons and overlapping windows, Windows became a
viable environment for development of major applications (such as Excel, Word for
Windows, Corel Draw!, Ami, PageMaker and Micrografx Designer), and the sales were
spurred by the runtime (Single Application Environment) versions supplied by the
independent software vendors.    When Windows/386 (see next section) was released,
Microsoft renamed Windows to Windows/286 for consistency.

The following are the major changes from earlier versions of Windows:
· Overlapping windows
· PIF files for DOS applications

Windows/386
In late 1987 Microsoft released Windows/386.    While it was functionally equivalent to its
sibling, Windows/286, in running Windows applications, it provided the capability to run
multiple DOS applications simultaneously in the extended memory.

The following are the major changes from earlier versions of Windows:
· Multiple DOS virtual machines with pre-emptive multitasking

Windows 3.0
Microsoft Windows 3.0, released in May, 1990, was a complete overhaul of the Windows
environment.    With the capability to address memory beyond 640K and a much more
powerful user interface, independent software vendors started developing Windows
applications with vigor.    The powerful new applications helped Microsoft sell more than
10 million copies of Windows, making it the best-selling graphical user interface in the
history of computing.

The following are the major changes from earlier versions of Windows:
· Standard (286) mode, with large memory support
· 386 Enhanced mode, with large memory and multiple pre-emptive DOS session

support
· No runtime versions available
· Program Manager and File Manager added
· Network support
· Support for more than 16 colors
· API support for combo boxes, hierarchical menus and private .ini files

Windows 3.1 92-09-21
Microsoft Windows 3.1, released in April, 1992 provides significant improvements to
Windows 3.0.    In its first two months on the market, it sold over 3 million copies,
including upgrades from Windows 3.0.    It is currently continuing to sell at a rate of over
1 million copies per month.

The following are the major changes from Windows 3.0:
· No Real (8086) mode support
· TrueType scalable font support
· Multimedia capability
· Object Linking and Embedding (OLE)
· Application reboot capability
· "Mouse Trails" for easier mouse use with LCD display devices
· Better inter-application protection and better error diagnostics
· API multimedia and networking support
· Source-level API compatability with Windows NT

Windows 3.11 94-03-01
Windows 3.11, available now, adds no new features but corrects some existing, mostly
network-related problems.    It is replacing Windows 3.1 at the retail and OEM levels, and
the upgrade is available free from ftp.microsoft.com.

Windows for Workgroups 3.1 93-04-22
The Windows for Workgroups package, released in November, 1992,    is the first
integrated Windows and networking package offered by Microsoft.    It provides peer-to-
peer file and printer sharing capabilities (on a level comparable to LANtastic or Netware
Lite) highly integrated into the Windows environment.    The simple-to-use-and-install
networking allows the user to specify which files on the user's machine should be made
accessible to others.    The files can then be accessed from other machines running either
Windows or DOS.   

Windows for Workgroups also includes two additional applications: Microsoft Mail, a
network mail package, and Schedule+, a workgroup scheduler.

Windows for Workgroups 3.11 94-03-01
Windows for Workgroups 3.11, available now, adds 32-bit file access, fax capabilites and
higher performance to Windows for Workgroups 3.1.

Windows NT 3.1 94-03-01
Microsoft Windows NT is Microsoft's platform of choice for high-end systems.    It is
intended for use in network servers, workstations and software development machines;
it will not replace Windows for DOS.    While Windows NT's user interface is very similar to
that of Windows 3.1, it is based on an entirely new operating system kernel.

The following are the major changes from Windows 3.1:
· Based on a new microkernel design
· Portable architecture for Intel x86/Pentium, MIPS R4000/R4400 and DEC Alpha

processors.    Support for PowerPC and SPARC architectures is under development.
· 32-bit addressing for access to up to 4 GB of memory
· Fully protected applications with virtualized hardware access
· Installable APIs for Win32, Win16, MS-DOS, POSIX and OS/2
· Installable file systems, including FAT, HPFS and NTFS
· Built-in networking (LAN Manager and TCP/IP) with remote procedure calls (RPCs)
· Symmetric multiprocessor support
· Security designed in from start, to be initially C2 certified, with a B-level kernel design
· API support for asynchronous message queues, advanced interprocess

communication, registration databases, Bezier curves and graphics transformations.

The following is the minimum platform for use with the client edition of Windows NT:
· 33 MHz 386 processor
· 12 MB memory
· 100 MB hard disk
· VGA graphics
The Advanced Server Edition requires 16 MB of memory.

Win32 in itself is not a version of Windows, but the name of application programming
interface for Windows NT and Chicago.

Win32s for Windows 3.1 94-03-15
Win32s is a set of libraries for Windows 3.1, which enable users to run most Windows NT
32-bit applications on Windows 3.1, without the extensive hardware requirements of
Windows NT.    The Win32s interface has effectively replaced the older Windows-32
programming interface used by 32-bit Windows applications such as previous versions of
Mathematica.

Windows 4.0 ("Chicago" and Win32c) 94-03-15
This unannounced product is rumored to be released in late 1994.    It will be a 32-bit
system providing full pre-emptive multitasking, advanced filesystems, threading,
networking and more.    It will include MS-DOS 7.0, but will take over from DOS
completely after starting.    It will not include Windows NT's security, multiprocessor
support, server capabilities or multiple API modules.    It will include a completely revised
user interface, along the lines of "Cairo", but not taken as far as that product.

See the section entitled Chicago Q&A for more information about Chicago.

Windows NT 3.5 ("Daytona") 94-03-15
"Daytona" is Microsoft's codename for an upcoming release of Windows NT, which will
provide OLE 2.0, improved performance and reduced memory requirements.    Availability
is expected in mid-1994

Windows NT 4.0 ("Cairo") 94-03-15
"Cairo" is Microsoft's project for object-oriented Windows, and a successor to the
Daytona release of Windows NT.    Firm details are not available, but most rumors place
expected availability sometime in 1995.    Developers are encouraged to work with OLE
2.0 in order to start moving in the correct direction towards future "Cairo" compatability.

Windows for Pen Computing 3.1
Microsoft developed Windows for Pen Computing for use on pen-based systems.    In most
aspects, it is basically equivalent to Windows 3.1 with extensions for pen support.   
These extensions include the use of a pen as a pointing device as well as handwriting
recognition and conversion.    Pen Windows first shipped in April, 1992.

Multimedia Windows
The term Multimedia Windows describes a package with Windows 3.0 and the Multimedia
Extensions.    These extensions are included in Windows 3.1, and thus Multimedia
Windows is no longer sold as a separate product.

Modular Windows
Modular Windows is the operating system for Tandy Corp.'s Video Information System
(VIS) multimedia player.    It is essentially similar to Windows' core, but without any
desktop accessories, TrueType fonts or a number of other features.

Win-OS/2
Win-OS/2 is the Windows component of IBM's OS/2 2.0.    It is based partially on Windows
3.0 and partially on 3.1.    While it runs a majority of the commercial Windows
applications, it is not covered by this document.

Chicago Q&A
The following questions and answers are from a document distributed by Microsoft in
December, 1993.

Microsoft is continually enhancing its Windows operating system product line to deliver
easy    to use yet powerful products that exploit the latest advances in microcomputer
hardware    technology.    There is a great deal of interest in and speculation about the
Chicago project,    the technology development effort which will deliver the next major
release of Windows for    the mainstream desktop and portable PC.    The purpose of this
document is to answer the    most common questions that customers have voiced about
Chicago.

What is Chicago? 94-03-18
What is Chicago and how does it compare to the Microsoft* Windows* 3.1, Windows*    for
Workgroups and Windows NT* operating systems?   

Microsoft has a family of operating system products designed to fully utilize the range of
PC    hardware available in the market today, while providing a consistent user interface
for end    users and a programming environment for developers.    Windows 3.x and
Windows for    Workgroups 3.x on MS-DOS* are designed for mainstream portable and
desktop PC    platforms.    Windows NT is designed for the high-end business and technical
workstation    platforms and Windows NT Advanced Server is designed as a server
platform.   

Chicago is the code name for a development project that will produce the successor to   
Windows 3.x and Windows for Workgroups 3.x.    The Chicago project encompasses a   
variety of important new technologies that will make personal computers running
Windows    easy to use, and that will provide a more powerful multitasking system and a
great platform    for communications.    Decisions about how those technologies will be
packaged will be made    later in the development cycle and will be based on customer
and business needs.

What is Cairo? 94-03-18
What is Cairo?    How does Chicago compare to Cairo?

Cairo is the code name for a development project that will produce the successor to
Windows    NT.    Chicago and Cairo will produce complementary products that will
continue to provide a    consistent user interface and programming environment across
the entire range of PC hardware    platforms.

Why does Microsoft have multiple Windows products? 94-03-18
 Why does Microsoft have multiple Windows operating system products?    Wouldnt it be   
simpler to just have one product?    Does that mean ISVs have to decide between
different    operating system products when writing applications?   

There are two distinct design points for operating systems platforms.    One is centered
on the    mainstream system, and the other is centered on the high-end system.    It is not
possible to    have one operating system implementation that fully exploits the broad
range of hardware    available today.    At the low end (currently represented by products
such as the HP Omnibook    and entry-level desktop machines), the primary design goal is
to keep the operating system    small and fast and to keep usage of machine resources to
a minimum.    At the high end (for    example, a dual-processor technical workstation), the
product would need to fully support    multiprocessing and advanced 3-D graphics as well
as be capable of running technical    applications that use maximum machine and system
resources.         

Over time, low-end machines will become more powerful, and over time, some of todays 
high-end features will migrate to the low end.    In addition, some technical innovations
will    appear on the mainstream Windows system first, largely because of the timing of
product    releases, and because some features are focused on end users and ease of use.
The Win32    API assures developers that, whichever system they target today, their
applications will be    able to run in the future as the platform evolves.     

Thus, while Chicago and Cairo may    leapfrog one another with some features, depending
on release cycles    e.g., Chicago will    sport the next major advance in the user interface,
with Cairo inheriting it in its release a few    months later    the general principle over time
is that the high-end product will be a    superset of the functionality offered in the
mainstream product.    Any deviations from this    principle are temporary, due to
variations in the product release schedules.    For ISVs and for development purposes,
however, Microsoft has just one Windows platform,    defined by the Windows-based 32-
bit API, Win32.    By following a few simple guidelines,    ISVs can write a single application
(executable) that runs on the Windows operating system    product family.    If they wish,
ISVs can target specific operating system products because    the functionality they
provide is important to their particular application, but that is not a    requirement.       
This situation is very much like the Intel microprocessor product line.    At any point in
time,    the Intel product line offers multiple products targeted toward different PC
products, ranging    from the 80386SL for low-end portable products to the Pentium
microprocessor for high-end    workstations and application servers.    What defines those
products is the Intel instruction set,    which enables applications to run on all Intel chips,
even though the underlying implementation    at the transistor level may be very
different across the Intel product line.    There are also some    instructions offered on the
Pentium chip that are not on the 80386SL, but ISVs would have to    go out of their way to
make their products run on only Pentium.    And over time, Pentium will    become more
mainstream, just as the 80486 has become the mainstream microprocessor    today, and
technologies developed at the low end, such as System Management Mode, will be   
implemented on the high end as well.

When will Chicago and Cairo ship? 94-03-18
When will Chicago ship?    When will Cairo ship?   

Chicago is scheduled to ship in the second half of 1994.    Cairo is scheduled to be
released    in the first half of 1995.

What is Daytona? 94-03-18
What is Daytona?    When will it ship?

Daytona is an interim release of Windows NT that is scheduled to ship this spring.

How will Chicago make the projected ship date? 94-03-18
Major new releases of operating system products have in the past been significantly
delayed.      How will you make your projected shipment date for Chicago?   

Chicago will be released when customers tell us it is ready.    The way to make shipment   
dates is to hit your intermediate milestones.    To date, Chicago has been making its   
milestones with the release of the first Preliminary Developers Kit (PDK) in August and
the    second PDK in December.    Feedback from beta releases beginning in March will tell
us more    precisely when in the second half of 1994 Chicago will ship.

What if Chicago ships before Cairo? 94-03-18
If Chicago ships before Cairo, how will users of Windows NT obtain the new functionality
in    Chicago?   

Any new functionality offered in Chicago will be made available to customers of Windows 
NT through the release of the Cairo product.

What are Chicagos key benefits? 94-03-18
What are the key benefits and features of Chicago?    What features will Chicago not
have?

    For customers, Chicago will present a major step forward in functionality on
mainstream desktop    platforms by providing a system that is easy to use, offers
responsive multitasking performance,    and provides a great platform for
communications.    Ease of use will be delivered through the    Plug and Play architecture
and an improved, intuitive user interface.    Chicago will be a complete,    integrated
protect-mode operating system that does not require or use a separate version of MS-
DOS, implements the Win32* API, and provides pre-emptive multitasking and multiple
threads    of execution for 32-bit applications.    The communications capabilities of
Windows will be    enhanced with integrated, high-performance networking, built-in
messaging, and features such    as Remote Network Access and File Synchronization
designed for mobile and remote computer    users.    Chicago will also be a hassle-free
upgrade for the current installed base of Windows-based users.      Chicago will be
compatible with most current applications and drivers for MS-DOS and Windows,    and
will provide an easy transition to the new user interface features.    The applications   
performance of Chicago will meet or exceed the performance of Windows 3.1 on 80386   
systems with 4MB of RAM running the same applications.    For systems with more
memory,    performance will be significantly improved over Windows 3.1.    The setup
program will enable    customers to uninstall Chicago, assuring customers a way to
remove it if they are in any way    unhappy with it, and will provide tools for system
administrators to customize the configuration    of Chicago.    Chicago will not be
processor independent, nor will it support symmetric multiprocessing    systems, provide
C2-level security, or provide full Unicode support.    These features cannot be    delivered
on the mainstream platform in the near future while still meeting the performance and   
resource targets necessary to create a compelling upgrade for the huge installed base of
users    of the Windows operating system.    If these features are important to a customer,
Windows NT    is the product to deploy.

What different Chicago packages will be available? 94-03-18
What different packages will you have for Chicago?   

Decisions about packaging the different technologies being developed as part of the
Chicago    project will be made later in the development cycle and will be based on
customer and    business needs.    One option is to provide a base Chicago package with
some add-on    packages that deliver functionality required by specific market segments. 
This is much like    the situation today in which the user of Windows 3.1 can upgrade to
Windows for    Workgroups by acquiring the add-on package that adds the 32-bit file
system and 32-bit    networking enhancements to Windows.

What will Chicago be called? 94-03-18
Since the term Chicago is a code name, what will you call the product(s) that you will   
eventually release?

Decisions about names will be made after we decide on a packaging plan.

What will happen to MS-DOS? 94-03-18
What will happen to the MS-DOS product line?   

Microsoft will continue to enhance MS-DOS as long as customers require it.    Future
versions    will be derived from the protected-mode technology developed in the Chicago
project.      Current    MS-DOSbased applications and drivers will continue to be compatible
with new versions of    MS-DOS.

How will Chicago perform on 4 MB? 94-03-18
Your performance goals on 4MB platforms sound very ambitious, considering all the   
functionality youre adding to Chicago.    How will you achieve those goals?

Chicago will implement new working set management technologies that will optimize the
use    of memory on low-configuration systems.    The networking, disk and paging caches
will be    fully integrated.    Protect-mode device drivers will be dynamically loadable, to
ensure that    only the drivers that are immediately needed are consuming memory.   
More components of    the base operating system will be pageable.    Great attention will
be paid to effective page    tuning, including hand-tuning source code.

Will Chicago run current applications? 94-03-18
Will Chicago run my current Windows-based applications?    How about MS-DOSbased   
applications?

Chicago will run most of the current applications for Windows and MS-DOS, as well as
new    applications written to the Win32 API.    Some classes of applications will need to be
revised    to be compatible with Chicago, such as shell-replacement utilities and file-
management    utilities.    Chicagos new shell provides a complete set of services that is
tightly integrated    with the operating system components.    Shell programs will need to
do more than simply    replace components such as Program Manager or File Manager.   
And file-management utility    vendors will want to revise their applications to take
advantage of the Long File Name    feature that Chicago offers.    Microsoft is working
closely with shell-replacement and file- utility vendors to enable them to revise their
products to add value to and be compatible    with Chicago.

Will I need to get new device drivers? 94-03-18
Will I have to get new device drivers to use my current devices with Chicago?

Chicago supports current real-mode device drivers as well as new 32-bit protected mode 
device drivers.    As a result, customers will be able to use their current devices either
with    their current device drivers, or with new device drivers made available with
Chicago.      Performance and functionality can be improved if the user installs the new
Chicago drivers.      Microsoft is making it easier for device manufacturers to deliver new
drivers for common    devices by defining a more layered, modular device driver
architecture.    For displays, printers    and modems, Microsoft will deliver universal
drivers.    These drivers will implement common    device functionality and expose an
interface for device manufacturers to create minidrivers    that implement the features
specific to their devices.    This approach was very successful    with printers for Windows
3.1, resulting in rapid availability of fast, high-quality drivers for a    wide range of
printers.

Will my current applications work well on Chicago? 94-03-18
Will my current applications perform as well on Chicago as they do on Windows 3.1
today?   

For Chicago to be a compelling upgrade, Windows-based users must experience a level
of    performance after installing Chicago that meets or exceeds the performance they
currently    experience running an identical set of tasks on Windows 3.1.    Because a large
portion of the    installed base of users of Windows today have 4MB systems, Chicago
must meet its    performance goals on 4MB systems.    On systems with more than 4MB of
RAM, Chicago will    offer significantly improved performance.    Understand, however, that
there are user and application scenarios today that already use    more than 4MB.    Users
who already require more than 4MB will continue to require more    than 4MB with
Chicago    and if they are using more than 4MB, they should see improved    performance. 
But they wont get away with using less memory in the future than they do    today.    Its
an important distinction to maintain.

When will Chicagos new UI be ready? 94-03-18
You say Chicago will have a different user interface than Windows and Windows NT.   
When    will that user interface be reflected in the beta versions of Chicago?

The new user interface will be delivered with the first beta of Chicago, scheduled for
March    1994.

Will the new user interface mean a lot of retraining? 94-03-18
Wont a new user interface mean a lot of retraining for current Windows-based users?   
Will    the advantages of the new user interface be worth the retraining costs?

The user interface being developed for Chicago will offer dramatic gains in ease of
learning    and ease of use for the broad range of people using PCs today.    Instead of
mastering    different kinds of tools to work with different resources on their computers,
users of    Chicago will be able to browse for and access all resources in a consistent
fashion with a    single tool.    This will be much easier than learning separate applications
such as Program    Manager, File Manager, Print Manager, Control Panel, etc. as users of
Windows must do    today.    A system toolbar that is always accessible will make it much
easier to start and    switch between full-screen tasks.    The implementation of OLE 2.0,
with its focus on the    users document rather than on the tool used to create it, and the
direct manipulation of    data through drag and drop in the user interface, will make
working with documents easier    and more intuitive.

Current users of Windows will be immediately productive with Chicago and be able to
learn    the new features of the user interface as they work.    Chicagos smart setup
technology will    use the current system settings to present an initial configuration that is
familiar for the    current Windows-based user.    And for corporate customers and
individuals who may not    want to make any user interface changes initially, Chicago will
enable them to continue    running their current Program Manager and File Manager
configurations.

What is Plug and Play? 94-03-18
What is Plug and Play?    What benefits does Plug and Play provide?

Plug and Play is a technology jointly developed by PC product vendors that will
dramatically    improve the integration of PC hardware and software.    It allows a PC to
adapt itself    dynamically to its environment; devices can be plugged into or unplugged
from a machine,    without the user having to do anything special    the machine just
works.    Plug and Play is    a general framework that advances that state of the PC
architecture by defining how the    software communicates with any device connected to
the PC.      Plug and Play technology enables installation and configuration of add-on
devices without    user intervention.    Plug and Play will make it possible for a consumer
to turn a standard    desktop system into a great multimedia machine by just plugging in
a Plug and Play sound    card and CD-ROM, turning on the system, and playing a    video
clip.    Plug and Play can enable new system designs that can be dynamically
reconfigured.    For    example, imagine a docking station that enables you to remove the
portable system while it    is still running so that you can take it to a meeting, and the
system automatically    reconfigures to work with a lower-resolution display and adjusts
for the absence of the    network card and large disk drive.    Or imagine an IR-enabled
subnotebook that automatically    recognizes, installs and configures an IR-enabled
printer when you walk into the room, so    your applications are ready to print to that
printer.    Plug and Play can also save development and support costs for the product
manufacturer.      Today, as many as 50 percent of support calls received by operating
system and device    manufacturers are related to installation and configuration of
devices.    With Plug and Play,    device driver development is simplified because device
manufacturers can write one driver    that works across multiple bus types using the
Universal Driver Model specified by the Plug    and Play architecture.    Today, device
manufacturers have to include bus-specific code in    each of their drivers.    With Plug and
Play, specific bus configuration data is contained in    bus drivers.    Also, operating
system preinstallation and configuration are simplified for    OEMs because Plug and Play
devices will automatically install and configure during setup.

What hardware changes does Plug and Play require? 94-03-18
What changes to current hardware and software are required to make Plug and Play a   
reality?    How will vendors figure out how to develop new devices with Plug and Play   
capability?

First, Plug and Play is compatible with existing systems, so nothing breaks because of   
Plug and Play.    Plug and Play devices can be brought out over time    in fact, this is
already    occurring    and will work with existing systems.        To deliver all of the above
benefits requires changes to devices and drivers, the BIOS, and    the operating system.   
Three fundamental capabilities are required for a system to provide    Plug and Play
functionality:

· A unique identifier for every device on the system
· A procedure for the BIOS and operating system to install and configure that

device
· A mechanism for the system and applications to recognize that a configuration   

change has occurred while the system is running   

All the changes to devices and drivers, the BIOS and the operating system are defined by
a    series of specifications for Plug and Play architecture.    The Plug and Play architecture
is an    open, flexible and cost-effective framework for designing Plug and Play products.   
The Plug and Play architecture was jointly developed by a working group of leading
vendors,    who reviewed design proposals with hundreds of companies in the industry at
conferences    and through online forums.    Plug and Play can be implemented by any
operating system    vendor and any hardware manufacturer.    In addition to Microsoft, IBM
has announced    support for Plug and Play in OS/2.    The Plug and Play architecture is
flexible, because it provides a framework that works on    multiple types of bus
architectures (ISA, SCSI, PCMCIA, VL, PCI, etc.), and it is extensible    to future bus
designs.    The Plug and Play architecture is also cost-effective, because it requires little
or no    incremental cost for vendors to implement in their products.

Wont it take a long time for Plug and Play? 94-03-18
Wont it take a long time for these changes to be reflected in products?    Acceptance of
the Plug and Play architecture is widespread, as seen by the rapid progress    the industry
is making in delivering Plug and Play specifications and products.    Specifications have
already been released for ISA, SCSI and PCMCIA devices, and the Plug and    Play BIOS.   
Additional specifications are in process, including PCI, ECP, VL, EISA, Micro    Channel, and
Access.    The first Plug and Play devices were demonstrated at COMDEX/Fall    1993,
representing a wide range of companies and products.    Intel has released development   
kits that enable device and system vendors to deliver improved configuration capabilities
for ISA    and PCI systems running with Windows 3.1 in a manner that will provide
compatibility with    future Windows operating systems.    Fully Plug and Play-capable
systems (including all Plug and    Play devices and a Plug and Play BIOS) will be available
in the first half of 1994.    These    systems will be able to offer complete Plug and Play
functionality when combined with Chicago.

Is the Chicago API different from the Windows NT API? 94-03-18
Ive heard that Chicago implements a 32-bit API.    Is that API different from the 32-bit API 
implemented on Windows NT?

There is only one 32-bit Windows API, called Win32, with ISVs able to use the API set to   
provide different levels of functionality for Windows 3.1, Chicago and Windows NT.     
Chicago implements a large subset of the functionality of the Win32 API offered on   
Windows NT, and extends the Win32 API in some areas.    These extensions will be
delivered    on Windows NT as soon as possible after the release of Chicago.

Will vendors need separate Chicago and NT versions? 94-03-18
If there are different implementations of the Win32 API available on different products in
the    Microsoft operating system product line, does that mean ISVs will have to have
separate    versions of their applications for Windows and Windows NT?

No.    By following some simple guidelines, ISVs can develop a single executable file that
runs    on Windows 3.x, Chicago and Windows NT.    At the recent Professional Developers   
Conference, we provided in-depth technical sessions on the proper way to design   
applications to do so, supplied tools in the SDK to help make such development easier,
and    showed several applications that ran across the entire Windows family.

When will Chicago applications be available? 94-03-18
When will applications be available that exploit Chicago?    Wont that take a long time?   

ISVs who are developing 32-bit applications for Windows 3.1 and Windows NT using the   
Win32 API and the guidelines we have provided will have applications that are able to
run on    Chicago immediately.    There are already more than 250 Win32 applications
available today,    and more coming quickly.    Other ISVs will wait until Chicago ships to
provide their 32-bit    applications; usually those applications start coming on-line about
90 days after the    operating system ships.    Chicago also will support todays 16-bit
applications, so users can    move to Chicago immediately and upgrade their applications
as they become available.    Chicago represents a major market opportunity for ISVs.   
Chicago will ship on almost all OEM    systems soon after it is released, and it will be
acquired as an upgrade by a substantial portion    of the Windows installed base (the
installed base will probably number more than 50 million by    mid-1995).    Customers
who purchase new systems and upgrade their operating systems are    the most active
purchasers of new software applications.    As a result, ISVs have a very    significant
business incentive to release versions of their applications that exploit Chicago.

Is Chicago completely 32-bit? 94-03-18
Ive heard Chicago described as a 32-bit operating system, yet Ive also heard that
portions of    Chicago are implemented with 16-bit code.    Are both these statements
correct?

Chicago will provide a 32-bit platform for applications by implementing the Win32 API on
a    complete, protect-mode operating system.    Chicago will also run well on mainstream 
Windows platforms (which for a large portion of the Windows installed base is a 4MB   
80386 system), and Chicago will be compatible with applications and drivers for MS-DOS 
and Windows.    These requirements must be met if Chicago is to meet customer needs
and    provide the volume to make ISVs successful.

These requirements have driven all the design decisions for Chicago.    The resulting
design    deploys 32-bit code wherever it improves performance without sacrificing
application    compatibility.    The design retains existing 16-bit code where it is required to
maintain    compatibility or where size is a critical issue but has minimal impact on
performance.    All of the    I/O subsystems and device drivers in Chicago, such as
networking and file systems, are fully    32-bit as are all the memory management and
scheduling components (the kernel and virtual    memory manager).    Many functions
provided by the Graphics Device Interface (GDI) have been    moved to 32-bit code,
including the spooler and printing subsystem, the rasterizer, and the    drawing
operations performed by the graphics DIBengine.    Much of the window management   
code (user) remains 16-bit to retain application compatibility.

How do the 16-bit components fit in? 94-03-18
If portions of Chicago still remain 16-bit, what happens when a 32-bit application makes
a    function call that is implemented by the 16-bit Chicago component?    Doesnt this slow
down    32-bit applications on Chicago relative to 16-bit applications?

When Win32-based applications call a 32-bit API that is implemented by a 16-bit
component    of the system, the function call is translated to its 16-bit equivalent for
processing by the    system.    This translation process is referred to as    thunking.   
Although there is some    overhead associated with a thunking operation, the Chicago
thunk layer is very efficient.      That overhead will be more than offset by the improved
efficiency of the linear memory    addressing scheme used by Win32-based applications.   
The overall impact of some    thunking code is quite modest vs. all the other work the
application and operating system    have to do.        For end users, perceptions of
application performance are based on a combination of the    efficiency of the application
when executing its own code and the efficiency of the operating    system code when the
application has called an operating system service.    On Chicago    systems with
adequate memory, end users will experience gains in system efficiency when    running
16-bit applications, and they will experience gains in both system and application   
efficiency when running 32-bit applications.

Will existing networking software work with Chicago? 94-03-18
Will I need new networking software to connect Chicago to my network server?

Customers will require Chicago to connect to their network servers when Chicago is   
installed, and to offer high-performance, reliable networking functionality.    To meet this   
requirement, Chicago will continue to run existing real-mode networking components.     
However, we expect customers to want to upgrade to the new 32-bit networking   
components provided by Chicago.    Chicago will enhance the open, flexible, high-
performance 32-bit networking architecture offered today with Windows for Workgroups   
3.11 that enables customers to mix and match networking components.    Chicago will   
support NDIS 2.0, NDIS 3.0 and ODI drivers, and will provide 32-bit NetBEUI, IPX/SPX and 
TCP/IP protocols.    Redirectors for SMB and NCP-based networks will be included.    In   
addition, Chicagos new multiple-provider interface will make it possible for the user to
view,    browse and connect to multiple networks in a consistent fashion.

What about Netware with Chicago? 94-03-18
What about NetWare?    Are you working with Novell on NetWare support?

Customers will require high-performance, reliable NetWare support the day Chicago is
released.      To meet that requirement, Microsoft is developing a 32-bit NCP Redirector
that is seamlessly    integrated with the Chicago user interface, and is encouraging Novell
to do the same.    Microsoft    will offer Novell access to information and assistance to
write a Chicago redirector.    Novell    engineers attended the Win32 Professional
Developers Conference and have been provided    access to the Preliminary Developers
Kit for Chicago.        With this approach, customers should be able to choose from multiple
sources for reliable,    high-performance NetWare connectivity software when Chicago is
released.

Will there be Chicago server version? 94-03-18
Will there be a Chicago server?

No, not in the sense of a server product such as Windows NT Advanced Server.    Chicago 
will continue to improve upon the peer server capabilities offered in Windows for   
Workgroups by offering additional features for remote installation, control and   
administration.    These features will make Chicago an even better product for an easy-to-
use    file and print-sharing LAN that is ideally suited as a small-business, small-
department or    remote office network.    Similarly, Windows NT offers peer services as
well for the high-end    desktop.    But for most    server applications, and in the sense that
most people ask about a    server product, Windows NT Advanced Server is the Microsoft
server product.

What about Chicagos portability? 94-03-18
I keep hearing rumors that you are working on a portable version of Chicago.    Is this
true?   

No, we are not working on a portable version of Chicago.    Windows NT is our portable   
operating system, and its already available on high-end Intel, MIPS, Alpha and Clipper   
machines; it will be available on the PowerPC by mid-1994 and on other high-end   
platforms over time.    There is no reason to make Chicago portable.    Chicago is
optimized for    Intel processors, and much of its internal code is Intel assembler, which
puts Chicago at the    heart of todays low-end and mainstream line.      Portability is
important for the new    generation of high-powered Intel and RISC machines, on which
Windows NT runs and for    which Windows NT has been optimized.    As these new high-
end machines become more    mainstream, which will happen over time, Windows NT will
already offer the power,    security, and reliability that users will demand to exploit these
new machines.

What about systems management? 94-03-18
What will Chicago do to make the client operating system more manageable?

A primary goal for the Chicago project is to make Windows less expensive to deploy in a   
corporation.    Chicago will include some specific features and enabling technologies that
will    make it easier for system administrators to install, configure, monitor, maintain and 
troubleshoot their Windows-based desktops.    Chicago can be set up from a network
server and at the desktop can be configured at the    desktop to run locally or across the
network.    In each case, the administrator can establish a    specific configuration for the
installation, selecting from a flexible array of setup    configuration options.    Chicago
desktops require only a floppy drive to start up, and paging    of components to a swapfile
on the network can be disabled to minimize network traffic.     

Once Chicago is installed, administrators will be able to centrally configure desktop
settings    such as file and printer sharing, network access, and passwords.    They can
remotely monitor    Chicago desktops with peer services running to determine what
resources are shared, what    connections have been made, and what files are being
used.    Chicago enhances the security    provided by Windows for Workgroups to include
user-level security.    To enable users to access    their personal groups, applications, and
data from any system on the network, Chicago will    provide user profiles.    Chicago will
also provide the infrastructure for the delivery of enhanced desktop    management
services by third parties. A backup agent will be included with Chicago to    enable
administrators to back up desktop data to a network server. To integrate the desktop   
into SNMP-based enterprise management systems, Chicago will also include a Systems   
Network Management Protocol (SNMP) agent and a Management Information Base (MIB)
for    a number of system resources. The system registry and Plug and Play architecture
provide a    rich store of data about the software and hardware configuration on the
desktop, and this    information can be accessed by system management software using
a DCE-compliant    Remote Procedure Call (RPC) mechanism.

Will there be mobility features? 94-03-18
What improvements will Chicago offer for people who use a mobile or remote computer?

Chicago will provide great support for mobile form-factor devices and will make it easy
for    end users to access the resources of their desktop systems when they are away
from their    offices.    The implementation of Plug and Play in Chicago will support
insertion and removal    of devices such as PCMCIA cards while the operating system is
running.    It will also support    automatic reconfiguration of dockable computers when
they are inserted or removed from    the docking station, without rebooting the system.   
An enhanced version of Advanced    Power Management will further extend battery life.   
The services provided by Windows for    Pen Computing will be enhanced and
incorporated into Chicago, including basic inking and    rendering support.    A special
focus will be on remote connectivity.    Any Chicago-based machine will be able to    serve
as a Remote Access dial-up server or a remote client for Windows NT Advanced    Server,
Novell NetWare servers or Chicago peer servers.    The same technology will be used    for
serial cable and infrared connections between PCs. The Remote Access architecture will   
be integrated with the Chicago networking architecture by using the same network
protocols    and advanced security features.    Remote Access will support wireless devices
and allow    application developers to make their applications slow-link aware to improve
the user    experience when working on a remote system via modem rather than on a
high-bandwidth    network.    Furthermore, Chicago will provide a simple form of file
synchronization and APIs    for applications to access the file synchronization services to
merge changes when both the    source document and copy have been modified.     
Remote e-mail and Microsoft at Work fax capability will be included, as in Windows for   
Workgroups 3.11 today.

How will file synchronization work? 94-03-18
Will the file synchronization feature in Chicago provide document management
capabilities?   

Chicagos file synchronization services are optimized for the needs of the mobile
computer    user who wants to take copies of documents to a remote location and have
them be    automatically synchronized with the source documents.    It is not intended as a
replacement    for sophisticated document management systems.

Chicagos file synchronization allows customers to identify files that they want to stay up
to    date, to change those files, and to have the files automatically updated when the
source file    is available to the system.    The update is performed by replacing the source
file with the    modified copy at the discretion of the user.    If an application writes a
merge-handler, then    specific data within the modified and source copies of a file can be
merged, to create a new    updated copy.

Will there be separate NT and Chicago SDKs? 94-03-18
You say you have one API with Win32.    Does that mean there will also be just one
Windows    SDK?   

Yes, there will be one Win32 SDK that developers can use to develop 32-bit applications
for    Windows 3.1, Chicago and Windows NT.    In fact, we recently announced a new   
subscription service, the Microsoft Developer Network Level II that provides developers
with    not only the Win32 toolkit, but every system toolkit we offer, on a single CD,
updated    quarterly.

What benefits are there to developers? 94-03-18
What benefits does Chicago offer to developers?    What are you doing to make
developing    Windows-based applications easier?

The Microsoft Visual Basic programming system has dramatically streamlined and
simplified    the development of Windows-based applications, and it will be enhanced to
support the    development of 32-bit applications for Chicago.    Microsoft also is
enhancing its Visual C++ * development system and Microsoft Foundation Class tools.

Will Visual Basic for Applications be included? 94-03-18
 Will Chicago include Visual Basic for Applications?   

Visual Basic for Applications will be offered as a separate product.

Will Chicago and NT use common device drivers? 94-03-18
Will Chicago and Windows NT share the same device drivers?

Generally not, since Chicago and Windows NT have different device driver models.   
However,    since both products support a modular, layered device driver architecture,
there are areas of    substantial synergy.    For example, SCSI miniport adapters for
Windows NT will be binary- compatible with Chicago, as will printer drivers and NDIS
drivers for Windows NT.

Will WOSA services be included? 94-03-18
Will WOSA services be included with Chicago?

WOSA is a general, open framework for implementing multiple back-end services in   
Windows while providing a single front-end interface for end users.    Services in Chicago   
such as messaging and remote network access are designed according to the WOSA   
framework.    Whether or not support for additional WOSA services, such as ODBC
support,    will be shipped with Chicago is a packaging decision that will be made later in
the    development cycle and will be based on customer and business needs.    All the
WOSA- related toolkits are available today to developers through the Microsoft Developer
Network    Level II subscription service.

Internet and Usenet

Usenet 94-03-15
If you received this FAQ from somewhere other than Usenet or Internet, you may not be
familiar with Usenet.    Basically, Usenet is a loose collection of over 1,000,000 computers
which exchange mail and news.    The network is unstructured and highly distributed;
most communication is either by TCP/IP over high-speed connections (or over dual-up
links using public telephone lines), or UUCP over public telephone lines.   

Internet is the worldwide collection of computers linked using the TCP/IP protocol,
consisting of somewhere    between 5,000,000 and 10,000,000 computers, usually
connected by high-speed TCP/IP network connections.

Usenet news is a software system where a person can post an article to a selected
newsgroup, and have every other news reader be able to read it.    There are over 3,000
newsgroups (including the alt groups), and daily volume of news now exceeds 50 MB.

While most Usenet systems are Unix-based, it is not a requirement, and there are a
number of Usenet software packages available for Windows as well.    If you have an
Internet or UUCP connection, ask your system administrator whether you have Usenet
news available.    Some of the most common newsreading software packages are
readnews, rn, trn, nn and notes.

Usenet Windows newsgroups 94-03-15
There are a total of eight Usenet newsgroups dealing with Microsoft Windows:

· comp.os.ms-windows.advocacy
This group is intended for adversarial discussions, arguments and comparisons to
other computers and operating systems.    Applicable to all Windows platforms.

· comp.os.ms-windows.announce
This is a low-volume moderated group with only Windows-related announcements
(and the text versions of the FAQs) and with no discussion.      Moderated by Steve
Graham (sgraham@shiloh.nimh.nih.gov).

· comp.os.ms-windows.apps
This group contains discussions, questions, and comments about the selection and
use of Windows and Windows NT applications.

· comp.os.ms-windows.setup
This group is meant for questions and discussions about Windows and Windows for
Workgroups setup process, driver availability and selection, and hardware
compatability and selection.

· comp.os.ms-windows.misc
All other discussions about Windows and Windows for Workgroups should be in this
group.

· comp.os.ms-windows.video (proposed)
Discussions about vide0 adapters, monitors and video drivers for usee with Microsoft
Windows and Windows NT.

· comp.os.ms-windows.networking.windows (proposed)
Discussions about Windows built-in networking capabilities: Windows for Workgroups,
Windows NT, Windows NT Advanced Server and LAN Manager.

· comp.os.ms-windows.networking.tcp-ip (proposed)
Discussions about TCP/IP networking with Windows, WinSock, WinSock-based
applications, newsreaders, PPP and SLIP.

· comp.os.ms-windows.networking.misc (proposed)
Discussions about Windows and other networks, including Netware, Banyan Vines,
LANtastic and LAN Server.

· comp.os.ms-windows.nt.setup
Questions and discussions about the Windows NT setup process, driver availability
and selection, and hardware compatability and selection.

· comp.os.ms-windows.nt.misc
All other discussions about Windows NT should be in this group.

· comp.os.ms-windows.programmer.tools
Discussions about the selection and use of    tools for Windows software development.

· comp.os.ms-windows.programmer.win32
All discussions about the Win32 applications programming interface (used in
Windows NT and Win32s) and the Windows NT SDK belong in this group..

· comp.os.ms-windows.programmer.misc
This group is for all other discussions about Windows software development.

· comp.os.ms-windows.programmer.bitmaps (proposed)
Discussions about programming with bitmaps, palettes and DIBs.

· comp.os.ms-windows.programmer.controls (proposed)
Discussions about programming with controls, dialogs, custom controls and VBXs.

· comp.os.ms-windows.programmer. drivers (proposed)
Discussions about programming Windows and Windows NT drivers and VxDs.

· comp.os.ms-windows.programmer. graphics (proposed)
Discussions about programming with graphics, GDI, fonts and printing.

· comp.os.ms-windows.programmer.memory (proposed)
Discussions about memory management, processes and DLLs.

· comp.os.ms-windows.programmer.ole (proposed)
Discussions about programming with OLE, COM and DDE.

· comp.os.ms-windows.programmer.winhelp (proposed)
Discussions about development of WinHelp and MultiMedia viewer applications.

· comp.binaries.ms-windows
This group is for postings of free and shareware Windows applications, utilities,
display and printer drivers    and for the latest FAQs.    Moderated by Tin Le
(tin@saigon.com).

The following groups have been replaced by those shown above:
· comp.windows.ms

This group was for discussions about Microsoft Windows.
· comp.windows.ms.programmer

This group was for discussions about programming for Microsoft Windows.

The following groups may also be of interest:
· alt.winsock

This group is for discussions about the use and programming of the Windows Sockets
interface.

· comp.databases.access        (proposed)
This group is for dicussions about Microsoft's Access database..

· comp.lang.basic.visual
This groups is for Visual Basic (both Windows and MS-DOS versions) discussions.

· comp.os.msdos.programmer
This groups contains general MS-DOS programming questions.    Some, especially
those concerning compiler selection, may be of interest to Windows programmers.

· bit.listserv.win3-l
This group is a two-way gateway of the BITNET WIN3-L mailing list, dealing with all
aspects of Windows 3.x.

· bit.listserv.access-l
This group is a two-way gateway of the BITNET ACCESS-L mailing list, dealing with
Microsoft's Access database.

The following groups are not for Microsoft Windows!
· comp.windows.misc

This group is for miscellaneous discussions about windowing systems in general.
· comp.windows.news

This group is for discussions about the Sun Microsystems NeWS windowing system.

In general, these newsgroups are only available to computers connected to Usenet or
Internet; they are not gatewayed into BITNET, CompuServe, Prodigy or other services.
Some FidoNet BBS systems, however, do carry selected Usenet newsgroups.    If you
cannot obtain access to these groups on your system, contact the author of this FAQ for
possible alternatives.

Alternatives to Usenet 94-03-02
If you are unable to find a connection to the Internet (that procedure can not be easily
defined, as the Internet does not have any sort of a formal structure), there are several
alternatives available for finding more information about Windows, and for locating
Windows software and drivers.

BITNET users (as well as any other with an electronic mail connection to Internet) can
subscribe to lists such as WIN3-L (win3-l@uicvm.bitnet), a mailing list dedicated to
Windows discussions.    This mailing list is similar in content to the comp.os.ms-
windows.misc newsgroup; no programmer mailing list exists on BITNET.    See the
following list for a list of mailing lists.

America OnLine also provides access to Usenet newsgroups.

If you live in North America (or in one of selected Western European countries), you can
subscribe to CompuServe, a commercial service.    CompuServe has extensive Windows-
oriented discussions and a fairly good selection of free software.    Although the level of
discussion is often less technical, it is much more structured than the Internet.   
CompuServe also has numerous vendor-supported forums, including ones organized by
Microsoft for Windows and Windows NT.

Many FidoNet-based BBS systems also carry the Usenet Windows newsgroups.    Consult
a local BBS listing to find your nearest FidoNet BBS.

Windows-related mailing lists 94-03-02
The following mailing lists are Windows-related.    Please use the requests address for
administrative mail (such as getting added to the list):

· Dr. Help
List: drhelp@eng.monash.edu.au
Requests: listserv@eng.monash.edu.au

· LabView
List: info-labview@pica.army.mil
Requests: info-labview-requesr@pica.army.mil

· Lotus Improv
List: improv@bmt.gun.com
Requests: improv-request@bmt.gun.com

· MathCAD
List: mathcad@eng.monash.edu.au
Requests: listserv@eng.monash.edu.au

· OWL
List: owl-list@cs.rpi.edu
Requests: owl-list@cs.rpi.edu

· ProtoGen/ProtoView
List: protoplus@netcom.com
Requests: protoplus-request@netcom.com

· WIN3-L (Windows 3.x)
List: win3-l@uicvm.bitnet
Requests: listserv@uicvm.bitnet

Freeware and shareware by ftp
While CompuServe (which has a lot of software) and your local BBS may have large
selections, the Internet provides an immense resource for all PC users.    The key program
to access this software is called ftp (File Transfer Protocol), and it's usable from most
Internet system, but is not usable through UUCP links.   

If you do have ftp available to you, follow the example below to connect to
ftp.cica.indiana.edu (do not type in the // comments):

$ ftp ftp.cica.indiana.edu // make connection
Connected to ... // cica responds
Userid (user@cica): ftp // enter "ftp" as userid
Password: real_userid@site // enter your own userid
ftp> tenex // for binary transfers
ftp> cd /pub/pc/win3 // where the goodies are
ftp> ls -l // list the directory
ftp> get ls-ltR // get the current index
ftp> quit // we're done!
$ _

Of course, you can get multiple files at a time    read the ftp manual page for more
information.   

Remember that shareware is not free: register the software you use to encourage the
development of more low-cost software.

Popular Internet ftp sites 93-03-01
The following ftp sites provide significant amounts of software of interest to Windows
users:
· ftp.cica.indiana.edu (129.79.20.84)

Directory /pub/pc/win3 contains one of the largest selections of Windows software
and device drivers anywhere.    Mirrored by wuarchive.    Please do not access
ftp.cica.indiana.edu between 8am and 6pm EST to prevent overloading the system.

· wsmr-simtel20.army.mil (26.2.0.74)
Directory pd1:<msdos> contains a very large selection of MS-DOS (and some
Windows) software.    Mirrored by wuarchive.

· wuarchive.wustl.edu (128.242.135.4)
Directory /mirrors/win3 contains a copy of the cica Windows archives, and directory
/mirrors/msdos contains a copy of the simtel10 MS-DOS archive.

· ftp.uu.net (137.39.1.9)
Directory /vendors/microsoft contains a lot of the Microsoft developer support
materials available on CompuServe, including tech notes, sample sources, the ODBC
SDK and WinHelp documentation for Windows and Win32 SDKs.

· garbo.uwasa.fi (128.214.12.3)
Directories /win3 and /win31 contain a majority of the cica Windows archives, and a
fair amount of non-cica material.    Note that garbo.uwasa.fi is located in Finland, and
North American users should avoid congesting transatlantic Internet links by ftping
from this site.    Mirrored by wuarchive.

· cc.monash.edu.au
Directory /pub/win3 contains a copy of the cica Windows archives.    Note that monash
is located in Australia, and North American users should avoid congesting transpacific
Internet links by ftping from this site.

· ftp.und.ac.za
Directory /pub/pc/win3/vbasic contains a a variety of things useful to Visual Basic
programmers.    Note that und is located in SouthAfrica, and you should try to avoid
congesting transpacific Internet links by excessive ftping from this site.

If your ftp program complains about an unknown site, you can substitute the numeric
Internet address (shown after each site name above) for the name in the ftp command.

Using archie 92-09-21
If you know the program you're looking for, but don't know where to find it, you might try
using a utility called archie.    This program allows you to search for a filename in all the
available ftp sites.

There are numerous archie servers available; to use one of them, telnet to the system,
and sign on as archie.    Follow instructions to search for a file.    The following lists some
of the know archie servers currently available for use; pick one in your geographical
area:

· archie.rutgers.edu United States (Northeast)
· archie.sura.net United States (Southeast)
· archie.unl.edu United States (West)

· archie.mcgill.ca Canada
· archie.au Australia and New Zealand
· archie.funet.fi Europe
· archie.doc.ic.ac.uk United Kingdom

Ftp by email
There are several sites that will perform general FTP retrievals for you in response to a
similar mail query, although it appears that the info-server@cs.net server is permanently
out of order.   

In general, please be considerate, and don't over-use these services.    If people start
using them to retrieve megabytes and megabytes of GIF or WAV files, they will probably
disappear.    Also, keep in mind that your system may be linked to the net using a long-
distance UUCP connection, and your sysadmin may not be happy about large mail files
using up modem time and filling overloaded spool directories.

· bitftp@pucc.bitnet
For information on this one (available only to BITNET sites) send it the message:

help

· ftpmail@decwrl.dec.com
For information on this server, available to all Internet sites, send it a mail message
with a body containing simply:

help

· mailserv@garbo.uwasa.fi
One final choice is to use the garbo.uwasa.fi server, which lets you access the
garbo.uwasa.fi archive (which contains most of the cica files).    For instructions, send
it a mail message with "Subject: garbo-request" and a single line of text "send help"
to

send help
Please do not use this service if you are located in North America!

FAQs (Frequently Asked Questions) 93-02-04
Hundreds of Usenet newsgroups have their own FAQs, most of them in text format.    You
can retrieve almost all of these FAQs' latest versions by ftp from rtfm.mit.edu in the
directory /pub/usenet/news-answers.

More about Internet and Usenet 94-03-15
To learn more about Internet and Usenet, I strongly recommend you purchase or borrow
a copy of Ed Krol's The Whole Internet User's Guide and Catalog (ISBN 1-56592-025-2,
$24.95), which covers email, news, ftp, archie and much more.    This 400-page handbook
is a thorough guide to getting around on the Net, clear enough for neophytes but with
new information even for true Internet veterans.    A wide range of other books are also
available; check your local bookstore for the selection.

To purchase The Whole Internet User's Guide and Catalog, check your local bookstore or
contact the publisher, O'Reilly and Associates at 1-800-998-9938 (103 Morris St.,
Sebastopol, CA 95472).

FTP archives on CD-ROM 92-09-21
Walnut Creek offers copies of the cica, wuarchive and simtel FTP archives on CD-ROM, at
prices ranging from $25 to $50, with annual subscriptions available.    Call (800) 786-
9907 or (510) 947-5996 for more information.

Software Development Kits

Microsoft Developer Network Level 2 94-03-10
The preferred way to get all the SDKs listed in the subsequent sections is to subscribe to
the Microsoft Developer Network, Level 2.    For $495/year you get not only the extremely
useful MSDN CD-ROM discs four times a year, as well as quarterly updates of all the SDKs
and DDKs available from Microsoft.

Windows 3.1 SDK
The primary Windows development tool you need to do development is the Windows 3.1
Software Development Kit (SDK).    It includes the libraries, header files, resource tools,
documentation and the Windows debug kernel you need to create native Windows
applications.

Before you rush out to buy the SDK, though, note the following points:
· A number of integrated development tools (such as Actor, Visual Basic and Turbo

Pascal for Windows) do not require the SDK to operate.

· A number of compilers (such as Microsoft C/C++ 7.0, Borland C++ 3.0 and
Zortech C++ 3.0) include the SDK to operate.

The SDK includes the tools you need to create pen-based and multimedia applications,
and it also allows you to create applications to run on Windows 3.0.

The list price of the Windows 3.1 SDK is $349.

Windows 3.1 DDK
In order to develop device drivers or VxDs for Windows 3.x, you need to purchase the
Windows 3.1 Device Driver Kit (DDK).    It includes the necessary header files, libraries,
documentation and sample source code to create new device drivers.

The list price of the Windows 3.1 DDK is $495.

Windows 3.0 SDK
The older version of the SDK, 3.0, is still quite useable with Windows 3.1, although it
includes older versions of the resource tools, Windows 3.0 debug kernel and is not
capable of creating applications which take advantage of the new Windows 3.1 features.

Windows NT 3.1 DDK
The Windows NT Device Driver Kit (DDK) is be available from Microsoft for $495,
including full printed documentation, on CD-ROM only.

Windows for Workgroups 3.1 SDK 93-04-25
The Windows for Workgroups SDK is intended for creating workgroup applications using
the new APIs introduced in Windows for Workgroups.    This SDK requires that you already
have the Windows 3.1 SDK (or equivalent).

The Windows for Workgroups SDK is available free of charge from Compuserve, or by ftp
from ftp.uu.net in the directory /vendor/microsoft/wfwsdk.

Win32 SDK 94-03-15
The latest member of the Windows SDK family is the Win32 Software Development Kit
(SDK).    The Win32 SDK also includes the tools for creating Win32s applications.

Win32 SDK for Macintosh 94-03-15
The    Win32 SDK for Macintosh allows developers to create native Macintosh-based
applications from existing Win32 or MFC applications.    It implements most of the Win32
interface using the standard Macintosh facilities, and includes a cross-compiler for the
Motorola 68000 (a PowerPC version is also forthcoming).

LAN Manager Toolkit 93-05-09
The LAN Manager toolkit is intended for creating Windows and Windows NT applications
that want to access LAN Manager and/or Windows NT network functionality.    This SDK
requires that you already have the Windows NT SDK.

The LMAPI SDK is available free of charge from Compuserve (except for connection
charges), or by ftp from ftp.uu.net in the directory /vendor/microsoft/LMAPI.

MAPI SDK 93-04-25
The MAPI SDK is intended for creating mail-aware and mail-enabled applications using
the MAPI interface promoted by Microsoft.    This SDK requires that you already have the
Windows 3.1 SDK (or equivalent).

The MAPI SDK is available free of charge from Compuserve (except for connection
charges), or by ftp from ftp.uu.net in the directory /vendor/microsoft/MAPI.

LSAPI SDK 93-04-25
The LSAPI SDK is intended for creating license-controlled network applications for
Windows, using LSAPI, the new industry standard licensing API.    This SDK requires that
you already have the Windows 3.1 SDK (or equivalent).

The LSAPI SDK is available free of charge from Compuserve (except for connection
charges), or by ftp from ftp.uu.net in the directory /vendor/microsoft/LSAPI.

ODBC SDK 93-04-25
The ODBC (Open DataBase Connectivity) SDK is intended for accessing a variety of
different database formats using a standardized SQL-based API.    This SDK requires that
you already have the Windows 3.1 SDK (or equivalent).

The ODBC SDK is available free of charge from Compuserve (except for connection
charges), or by ftp from ftp.uu.net in the directory /vendor/microsoft/odbc-sdk.

Windows NT SNMP Toolkit 93-04-25
The SNMP SDK is intended for creating Windows NT applications that access mail through
SNMP (Simplke Network Mail Protocol).    This SDK requires that you already have the
Windows NT SDK.

The LSAPI SDK is available free of charge from Compuserve (except for connection
charges), or by ftp from ftp.uu.net in the directory /vendor/microsoft/LSAPI.

Planning for future versions of Windows

Application Compatibility in Future Versions of Windows 93-05-08

Courtesy of Microsoft Corporation
Created: February 12, 1993

Abstract
This article provides guidelines for writing applications for the MicrosoftÒ Windows   
version 3.x operating system in a manner that will produce the fewest compatibility
problems when the application is run on future versions of Windows. The discussion
focuses on compatibility issues involving Windows-based applications, Windows
display drivers, and MS-DOSÒ-based applications.

Guidelines for Windows-based Application Developers

Keep these general rules in mind when developing applications for Microsoft Windows :

· The golden rule of application compatibility is to adhere to the Microsoft Windows
Software Development Kit (SDK) documentation. That is, don't use an application
programming interface (API) that is not documented, and only use the features of
an API that are documented.

· Don't depend on the format of internal data structures to remain the same in the
future. For example, the format of the internal structures used for windows
(HWND), menus (HMENU), device contexts (HDC), regions (HRGN), bitmaps
(HBITMAP), and tasks (HTASK) are guaranteed to change in a future version of
Windows. Other internal structures may also change.

· Don't assume objects are allocated in USER's or GDI's data segment. In an
attempt to remove system resource limitations, objects that are currently
allocated in these data segments may be allocated elsewhere in the future. For
example, assuming a window handle is an offset in USER's data segment would
probably be incorrect in future versions of Windows.

· Don't replace system DLLs such as TOOLHELP.DLL, SHELL.DLL, and
COMMDLG.DLL unless you use the version APIs (VER.DLL). These DLLs will change
in the future. The system will malfunction if applications replace these DLLs with
older 3.0 or 3.1 versions. If your application installs these DLLs, double-check the
code for correctness; many applications that attempt this do not do it correctly.

· Test the Windows version number properly. The following code, for example, will
not work correctly if it is run on a version of Windows that is numbered 4.0
because the first test of the minor version will fail. Surprisingly, this is a very
common mistake.

winVer = LOWORD(GetVersion());
if (HIGHBYTE(winVer) >= 10 && LOWBYTE(winVer) >= 3)       
        // run
else
        //exit

Use the following code instead:

winVer = LOWORD(GetVersion());

winVer = (((WORD)(LOBYTE(winVer))) << 8)|(WORD)HIBYTE(winVer);

// NOTE: Always use a HEX value here!!!       
if (winVer >= 0x030A)       
        // run
else
        //exit

· Applications written for Windows version 2.x will not be supported under future
versions of Windows. Make sure your applications have been tested and built
using any of the Windows version 3.x SDKs so that they are marked as
applications written for Windows version 3.0 or higher and can run in protected
mode.

· Don't copy Program Manager group files onto a user's disk. Use the Program
Manager's dynamic data exchange (DDE) interface to add groups and group items
for your application.

· Don't assume minimized application windows have icon title windows. If your
application walks the window list and assumes that windows with a class name of
"0x8004" or "#32772" are icon titles, the application will not function properly in
future versions of Windows. If your application needs to perform this operation
when running on Windows version 3.1, write your code so that the application will
continue to work even if it doesn't find the icon title windows.

· Don't hard-code the pixel dimensions of menus, scroll bars, sizes of captions, and
such. Instead, use GetSystemMetrics to get these sizes. The sizes will change
depending on the active display driver and may be user-adjustable in the future.
Also, your code should watch for the WM_WININICHANGED message and
reinitialize the values accordingly.

· Don't hard-code button colors to be the standard three shades of gray. Use the
GetSystemColors function to obtain these colors. Again, watch for the
WM_WININICHANGED message, and reinitialize these colors accordingly.

· Those writing debuggers must use the services provided by TOOLHELP.DLL, rather
than the services provided by the older WINDEBUG.DLL. WINDEBUG.DLL will not
work in future versions of Windows.

· Don't assume that GlobalWire allocates MS-DOS addressable memory. Your
application must use GlobalDOSAlloc to obtain this type of memory.

· Don't assume that GlobalAlloc with the GMEM_FIXED option allocates MS-DOS
addressable memory. Your application must use GlobalDOSAlloc to obtain this
type of memory.

· Printer soft font information is currently stored in WIN.INI and is associated with a
particular port (LPT1, for example). In the future, this information will be
associated with a printer in order to be independent of the port to which the
printer is connected.

· Your application must not assume the contents of any WINOLDAP (MS- DOS
application manager) data structures allocated in WINOLDAP's data segment.
These structures may change in the future.

· Do not overtune your application's STACKSIZE or HEAPSIZE settings in the
application's .DEF file. Some developers have tuned these settings (STACKSIZE, in
particular) in their applications to supply exactly enough space to run on Windows
version 3.0 or 3.1. These applications sometimes have problems because
different Windows display drivers have different stack depth characteristics.
Future versions of Windows will compound this problem because the stack depth
will change for most of the core components (GDI, KERNEL, USER, and so forth). It
is recommended that at least an additional 2K be added to the minimum
STACKSIZE and HEAPSIZE settings.

Guidelines for Display Driver Developers

Keep these points in mind when developing display drivers for Windows:

· The meaning of the WindHand field in the EXTPAINTSTRUC may be changed for
enhanced mode grabbers. WindHand is the HWND of the grabber child window
inside the WINOLDAP window. All grabber painting should be restricted to this
window. Grabbers weren't supposed to use WindHand for anything beyond calling
GetClientRect, GetDC, and such.

· Grabbers shouldn't use the EPStatusFlags bits other than fFocus, fVValid, fSelect,
and fGrbProb. Some bits that are private to WINOLDAPP were accidentally
included in the DDK header files although not used in any Microsoft-distributed
grabber sample source.

Guidelines for MS-DOS Application Developers

If you develop applications for MS-DOS, keep these rules in mind:

· Make sure your application works properly in a Windows version 3.1 MS-DOS box.
Especially make sure your setup program will function in a Windows MS-DOS box.
For example, writing over Program Manager group files or altering WIN.INI or
SYSTEM.INI while Windows is running would be bad things to do. Even though the
application is MS-DOS-based, consider writing a Windows-based setup program,
especially if your setup process needs to perform operations such as altering
WIN.INI or SYSTEM.INI.

· Don't assume the location of the system file table (SFT) or MS-DOS buffers. These
may be moved into high memory to provide extra conventional memory. In
general, all internal MS-DOS data structures may be moved into high memory in
the future.

· Don't assume sizes of internal MS-DOS data structures. For example, don't
assume that a drive parameter block (DPB) is 21h bytes long as some
applications have. The format of data structures-such as these that are easy to
find and traverse-very well may change in future versions of MS-DOS. Use
documented INT 21h calls to obtain information such as this. For example, DPBs
can be obtained using INT 21h functions, 1Fh and 32h.

Preparing your application for Chicago 94-03-19
This section is based on the information presented by Dave Edson in the February 1994
issue of Microsoft Systems Journal.    Consult this issue for further details.

· Use GetSystemMetrics API for everything it can be used for
Chicago allows users to customize the system extensively; you should make
certain that you use the correct parameters and attributes.

· Process WM_WININICHANGED
Make sure you handle changed attributes.

· Avoid drawing non-client areas yourself
Your look might not conform to Chicagos.

· Dont draw on the icons
Chicago will use a different API for drawing into the icon.

· Use only TrueType fonts in dialogs
Chicago will allow users to scale the dialogs.

· Use VER.DLL in your installation process
Make sure you dont overwrite newer DLLs during the installation.

· Use compound files for storage
Using OLE 2s STORAGE.DLL will allow you to save extra information (such as icon
and description) in the file, which will then be accessible to Chicagos shell.

· Remember general portability
Consult the preceding section for general portability guidelines.

· Beware of multiple instances
Chicago wont restrict multiple instances of applications; make sure you handle
such situations in a reasonable fashion.

· Use common dialogs
Get the Chicago look and feel for free!

· Support OLE 2 drag and drop
This will integrate your application into Chicagos desktop.

· Increase your stack and heap allocation
32-bit values need more space than 16-bit ones.

· Dont draw on the icons
Chicago will use a different API for drawing into the icon.

· Allow for long filenames
Allow for filenames of up to 254 characters (this is also the maximum length for a
pathname), even if you dont do any specific processing for them.

Things youll add later for your Chicago app 94-03-19
This section is also based on the information presented by Dave Edson in the February
1994 issue of Microsoft Systems Journal.    Consult this issue for further details.

· Support Chicago-style help
This is rumored to be based on the Multimedia Viewer.

· Use threads, memory-mapped files and asynchronous I/O
You can start using these today with Win32 for Windows NT.

· Support pen input
Again, you can support Windows for Pen in your current applications; Chicago will
build on this technology.

· Use new controls
Chicago will support several new controls.    Depending on your perspective, you
can currently roll your own, use a 3rd-party control, or simulate their behavior
using existing Windows controls.    In any case, use an insulating layer so that our
app wont need to be changed once you switch to Chicagos native controls.
· Slider

You can get the feel, if not the look, using a scrollbar.
· Progress Meter

Use a 3rd-party control, or implement it yourself.
· Spin button

Use Windows 3.1 SDKs MUSCROLL.
· Toolbar

Use the MFC toolbar, a 3rd-party control, or roll your own.
· Status bar

Use the MFC toolbar, a 3rd-party control, or roll your own.
· ListView

Use a 3rd-party control, or implement it as an owner-draw listbox.
· Column Heading

Use a 3rd-party spreadsheet control.
· Property sheets and folder tabs

Study Word 6 or Escel 5, and implement your own; really, these are quite
simple, and yet add significant pizzazz to your application.

· Rich Text edit control
Use a 3rd-party control.

· Replace Cut/Copy/Paste with Move to Here/Copy to Here
Use the right mouse button to pop up these new actions.

Windows SDK programming techniques

User interface and windows

Activating a window without bringing it to the top 93-06-20
In Windows 3.1 and Windows NT, it is possible to activate a window without making it the
topmost one (i.e. without changing the existing window Z order).    To do this, make the
following function call:

SetWindowPos(hWnd, NULL, 0, 0, 0, 0,
                          SWP_NOMOVE | SWP_NOSIZE | SWP_NOZORDER);

You will then need to process the WM_WINPOSCHANGING message, and clear the
SWP_NOZORDER flag again, this time in the WINDOWPOS structure.

Animating the cursor 93-04-25
While Windows NT provides an API for animating cursors, Windows 3.x does not.    If you
have hte need for animated cursor, you can use WM_TIMER to generate timer messages
at fixed intervals, and then load the next cursor resource whenever you receive a
WM_TIMER message.   

Note that cursor animation may, depending on the user's display hardware, cause quite
noticeable flicker; you should probably provide an option for the user to disable the
cursor animation.

Changing the icon on the fly 92-11-04
If you want to change the icon of an application while it is minimized, you need to call:

SetClassWord(hWnd, GCW_HICON, hIcon);
RedrawWindow(hWnd, NULL, NULL, RDW_FRAME | RDW_ERASE |
                          RDW_INVALIDATE);

This call with these flags invalidates a window's non-client area, with the RDW_ERASE
forcing a WM_ERASEBKGND.

Changing the application's language 93-01-20
Windows is designed to make it easy for the developer to maintain multiple national
language versions of an application.    The general technique involves modifying only the
resource file (with menus, dialogs, strings and accelerators) for each national edition,
and leaving the source code alone.    For example, to change the message strings to the
correct national language, you'd have multiple .rc files, one for each language, such as
this:

        rc.h
                #define IDS_NOTFOUND          8000
                #define IDS_REPLACEFILE    8001
                ...

        english.rc
                STRINGTABLE
                BEGIN
                        IDS_NOTFOUND,              "File not found"
                        IDS_REPLACEFILE,        "Replace existing file '%s'?"
                        ...
                END
               
        finnish.rc
                STRINGTABLE
                BEGIN
                        IDS_NOTFOUND,              "Tiedostoa ei löydy"
                        IDS_REPLACEFILE,        "Korvaa tiedosto '%s' uudella?"
                        ...
                END

        error.c
                DisplayError(WORD wCode)
                {
                        char szMsg[256];

                        LoadString(hInst, wCode, szMsg, 256);
                        MessageBox(.....);
                }
               

For each national language version, you would use rc to compile the resources, and then
build them into the executable.

If you need to be able to switch languages on the fly, you have several options.    First,
you can use multiple DLLs, each one containing a particular language's resources.    As an
alternative, if the number of languages you need to support is fairly limited, you can
include all the languages you need to support.    In this example, you would have
something like:

        rc.h
                #define IDL_ENGLISH                  0
                #define IDL_FINNISH                100
                #define IDL_SWEDISH                200
                ...

                #define IDS_NOTFOUND              8000

                #define IDS_REPLACEFILE        8001
                ...
                #define IDS_E_NOTFOUND          (IDS_NOTFOUND        + IDL_ENGLISH)
                #define IDS_E_REPLACEFILE    (IDS_REPLACEFILE + IDL_ENGLISH)
                ...
                #define IDS_F_NOTFOUND          (IDS_NOTFOUND        + IDL_FINNISH)
                #define IDS_F_REPLACEFILE    (IDS_REPLACEFILE + IDL_FINNISH)
                ...

        national.rc
                #include <english.rc>
                #include <finnish.rc>
                ...

        english.rc
                STRINGTABLE
                BEGIN
                        IDS_E_NOTFOUND,              "File not found"
                        IDS_E_REPLACEFILE,        "Replace existing file '%s'?"
                        ...
                END
               
        finnish.rc
                STRINGTABLE
                BEGIN
                        IDS_F_NOTFOUND,              "Tiedostoa ei löydy"
                        IDS_F_REPLACEFILE,        "Korvaa tiedosto '%s' uudella?"
                        ...
                END

        error.c
                DisplayError(WORD wCode)
                {
                        char szMsg[256];
                        extern WORD wLanguage;

                        LoadString(hInst, wCode + wLanguage, szMsg, 256);
                        MessageBox(.....);
                }
               

Changing the restored size of a maximized window 93-01-20
If your application's window is maximized, and you want it to be set to a size other than
what it was (before maximizing) when the user hits the "restore" button, you will need to
process the WM_WINDOWPOSCHANGING message in your window procedure.    This will
allow you to set the size and position of the restored window to anything you need.

Creating an initially invisible MDI child window
Before creating the child window,

SendMessage(hClientWindow, WM_SETREDRAW, 0, 0L);
Then, in your child window WM_CREATE processing,

ShowWindow(hChildWindow, SW_HIDE).
SendMessage(hClientWindow, WM_SETREDRAW, 1, 0L);

Drag-and-drop: File Manager and Print Manager
You will need to register your application in the registration database. You can do this
either using the Registration Editor, or the Reg* API in Windows 3.1 SDK.    One of the
simplest mechanisms is that used by several Windows 3.1 applets    to print a file the
parameters are

/p filename
See the registration database for examples.

Drag-and-drop: generalized client 93-01-20
To do generalized drag-and-drop, you'll need shell.dll, shipped with Windows 3.1.
· Either do DragAccept() or create the window as WS_EX_DROPFILES (0x10L)
· Wait for the WM_DROPFILES message (0x0233), which passes a handle to something

in wParam
· You can then issue   

WORD DragQueryFile(hDrop, 0xffff, NULL, 0)
to get the file count, and then

WORD DragQueryFile(HANDLE hDrop, WORD nFile, LPSTR sDest, WORD max)
for each of the dropped files

· Once you have finished, call
DragFinish(hDrop)

For Visual Basic, get the file dd.zip from CompuServe's MBASIC forum, which lets you
implement drag-and-drop from VB.    This file may also be available at ftp.uu.net and   
ftp.cica.indiana.edu.

Drag-and-drop: generalized server 93-01-20
To act as a drag-and-drop server (meaning that the user can drag files from your
application to a drag-and-drop client application), you will need to follow the following
steps:
· Capture the mouse
· On mouse movement, get the client window with WindowFromPoint(), and test it for

WS_EX_ACCEPTFILES style to determine whether to allow dropping
· Construct a file structure in memory allocated with GMEM_DDESHARE as follows:

typedef struct tagDRAGHEADER {
    UINT wStructSize;            // Size of the structure (8 bytes)
    UINT x;                                // x-coordinate in window's client hDC
    UINT x;                                // y-coordinate in window's client hDC
    BOOL fInClient;                // TRUE if on window's client area
} DRAGHEADER;
followed by a list of filenames separated by nulls, and terminated by a double null.

· Post a WM_DROPFILES message to the client window with the above structure as a
parameter.

Forcing a window to stay fixed size or iconic
In order to make your app stay as an icon, you must process the WM_QUERYOPEN
message.    If you always return 0 for this message, you indicate that the icon can not be
opened into a ordinary window.

To retain a fixed size, you must process the WM_GETMINMAXINFO message. When you
get it, modify the info pointed to by lParam:

LPPOINT lpSize = (LPPOINT)lParam;
lpSize[3].x = lpSize[4].x = theRightWidth;
lpSize[3].y = lpSize[4].y = theRightHeight;

If you don't want the window to be maximized or iconized, create it with the
~WS_MAXIMIZEBOX and/or ~WS_MINIMIZEBOX styles, and disable those items from the
system menu, if there is one.   

Also, you can    alternately disable resizing by creating the windows with
~WS_THICKFRAME, and disabling the Size... item on the system menu.

Getting the handle of the active window 93-01-20
To get the active window's handle, just call

hActiveWindow = GetFocus();

Keeeping a window on top 93-01-20
To keep a window on top of all other windows without requiring it to be the active window
(akin to the behaviour exhibited by the Windows 3.1 clock), you can make the following
function call:

SetWindowPos(hWnd, (HWND)-1, 0, 0, 0, 0,
                          SWP_NOMOVE | SWP_NOSIZE | SWP_NOACTIVATE);

Note that it is not considered polite behavior by an application to always keep its window
topmost, unless you at least give the user the option of disabling this "feature".

Limiting window size 92-12-15
To limit window size, you'll need to process the WM_GETMINMAXINFO message, and fill in
the structure describing the minimum and maximum window sizes.

Right-justifying menu items
To right-justify an entire menu item or just a part of it, place a \a in the string just before
the right-justified part.   

Incidentally, the Windows 3.0 CUA guidelines no longer call for right-justifying the Help
menu on the menu bar.

Right-justifying menu items at runtime
It's undocumented, but what you need is a 0x08 in the menu string.    The easiest way to
do this is to place a \b in the string before the right-justified part (either the text of the
accelerator key).   

Incidentally, the Windows 3.0 CUA guidelines no longer call for rightjustifying the Help
menu on the menu bar.

Trapping mouse clicks on desktop
To trap mouseclicks on the desktop, you will need to subclass the desktop window.    The
following code fragment illustrates the technique (sample code courtesy of Blake
Coverett, blakeco@microsoft.com):

To subclass the desktop:
        hWndDesktop=GetDesktopWindow();
        hSaveTask=GetCurrentTask();
        lpfnDesktop=(FARPROC)GetWindowLong(hWndDesktop, GWL_WNDPROC);
        lpfnSubClassProc=MakeProcInstance((FARPROC)WndProc, hInst);
        SetWindowLong(hWndDesktop, GWL_WNDPROC,
                                    (LPARAM)(LONG)lpfnSubClassProc);

and then to undo it when ready to unload:
        SetWindowLong(hWnd,GWL_WNDPROC, (LPARAM)(LONG)lpfnDesktop);
        PostAppMessage(hSaveTask,WM_QUIT,0,0);

Using status bars with MDI 92-09-15
Add the following code fragments to the indicated places in the WinProc()
of an application, or the FrameWinProc() of a MDI application.

case WM_CREATE:
        hWndClient = CreateWindow("MDIClient",...,
  WS_CHILD|WS_VISIBLE|WS_CLIBSIBLINGS|
  WS_HSCROLL|WS_VSCROLL,...);
        hWndStatus = CreateWindow("Static",...,
  WS_CHILD|WS_VISIBLE|SS_LEFT|SS_NOPREFIX,...);
        ...
case WM_SIZE:
        GetClientRect(hWnd,&rect);
        // Calculate DIVIDING_LINE such that.
        // rect.top < DIVIDING_LINE < rect.bottom
        // One choice:
        // DIVIDING_LINE = rect.bottom - GetSystemMetrics(SM_CYMENU);
        MoveWindow(hWndClient,rect.left,rect.top,
                                rect.right,DIVIDING_LINE,TRUE);
        MoveWindow(hWndStatus,rect.left,DIVIDING_LINE,
                                rect.right,rect.bottom,TRUE);
        break;    // Do *not* pass to DefFrameProc() of MDI app!!!
        ...
        // To change the status text:
        SendMessage(hWndStatus,WM_SETTEXT,0,(LONG)(LPSTR)szStatusText);

Notes:
· For non-MDI applications, all references to hWndClient above will simply be removed.
· Menu selection can be tracked by setting the status text at a response to the

WM_MENUSELECT message.
· To draw a line between status bar and the rest of the client area, the DIVIDING_LINE

should be adjusted in either MoveWindow() call to leave a gap between, which is
called InvalidateRect() for, and actually being painted in response to the WM_PAINT.

· The parent window should have WS_CLIPCHILDREN style bit set.

Dialogs

Adding controls to a non-dialog window
You can do this by simply calling CreateWindow() with one of the predefined child window
control class names (see the control class definition table in the SDK reference manual).

Creating 3-D "look" dialogs 93-04-22
The current Microsoft-endorsed method of creating dialogs with the chiseled 3-D look is
to use the ctl3d.dll dialog, which gives you a look similar to Excel 4.0's dialogs with very
low effort.    This library is included on the Microsoft Developer Network CDs, and is also
available by ftp from ftp.uu.net, directory /vendor/microsoft/developer-network.

Doing a timeout in a dialog
Start a timer in your WM_INITDIALOG processing. If your dialog box receives the
WM_TIMER message, kill the timer and post yourself a WM_COMMAND messgae with
wParam == IDOK. If the user presses any button, restart the timer.

Minimize button on modal dialog moves when clicked
It's a bug in Windows 3.1.    To duplicate this, create a modal dialog with the styles
CAPTION, MODAL FRAME, MINIMIZE-BOX, activate the dialog, press the Minimize button --
and watch it move to the top right corner, on top of the modal frame!   

The workaround: don't use a Minimize box on a modal dialog.

Modifying common dialogs 93-01-20
If you want to modify a common dialog, do not delete controls from the templates, as the
common dialog procedures expect these controls to exist.    Instead, make them invisible
or move them outside the boundaries of the dialog gox to prevent the user from seeing
or accessing them.

Null dialog handles from Borland custom dialogs 93-07-30
If you keep getting null dialog handles with Borland C++ unless I have Turbo C++ or
Borland C++ running, your dialog is probably of the BorDlg class, which requires code in
BWCC.DLL.    If you are running with the IDE active in Windows, the DLL is already loaded.

However, you have probably not done anything to force BWCC.DLL to be loaded with
your application when running standalone, so the dialog manager cannot find the
necessary routines to draw the dialog.    The easiest way to force BWCC.DLL to be loaded
is to call BWCCGetVersion() at the very beginning of your application, and to link in
BWCC.LIB.   

Alternately, you can do a
hBorlandDLL = LoadModule("loadbwcc.exe");

when you start up your application, remembering to release the handle before exiting
your application..

Preventing switching away from a modal dialog
The design of the Windows API means that if there are two dialogs active simultaneously,
the user can switch between the two, even one of them is modal.    To prevent this, you
should use EnableWindow() to explicitly diable any modeless dialogs when your modal
dialog starts up.

Using a dialog as your main window 92-12-18
First, you have to create a dialog box first.    Include a class name(you name
it).    Then, in your WinMain function, register a class using that class name
and add the constant DLGWINDOWEXTRA to the window extra byte component.    This
constant is defined in Windows.h.    Then, use CreateDialog() to display the
dialog, make sure the last 2 parameters are set to NULL.    In your WndProc
function, instead of calling DefWindowProc, call DefDlgProc.    Then, you are
basically all set.    Make sure in your dialog definition you create your dialog
box initially visible.    For further information, see your docs.

Using Borland custom dialogs with other compilers 92-09-28
You can't integrate bwcc.dll with the Dialog Editor but you can manually modify the
dialog file and use appropriate BWCC control classes and styles.

Include bwcc.h in your header file and then add bwcc.lib to your link options (before
libw.lib). Also make sure bwcc.dll can be found in either the Windows directory or the
current directory when the app starts or in the path.

Examples (thanks to Sam Espartero, sqe@hpcc01.corp.hp.com):

Link Options:
/align:16 /NOD PLAYCD USERCODE MCICDA SUPERCLS,PLAYCD.EXE,,
LIBW MLIBCEW bwcc mmsystem, PLAYCD.DEF

Dialog File:

ABOUT DIALOG    4, 5, 199, 137
STYLE WS_POPUPWINDOW | DS_MODALFRAME | WS_VISIBLE |
            WS_CLIPSIBLINGS | WS_DLGFRAME
CAPTION "Sample BWCC Dialog"
CLASS "BorDlg"
BEGIN
        CONTROL "", 100, "Static", SS_ICON | WS_CHILD | WS_VISIBLE,
                        5, 16, 16, 16
        CONTROL "", -1, "BorShade", WS_CHILD | WS_BORDER,
                        33,6,161,126
        ...

        CONTROL "", IDOK, "BorBtn", BS_DEFPUSHBUTTON | WS_TABSTOP |   
                        WS_CHILD, 154, 9, 32, 20
END

Message box:

#ifdef BWCC
        BWCCMessageBox(GetActiveWindow(), "Unknown MCI Error!",
                                      "MCI Error", MB_OK | MB_ICONHAND);
#else
        MessageBox(GetActiveWindow(), "Unknown MCI Error!",
                              "MCI Error", MB_OK | MB_ICONHAND);
#endif

Controls

Allowing ENTER in a multiline edit control 92-09-15
To allow the use of the Enter key, there is no need to subclass the edit control.    An
easier way in Windows 3.1 and later (which also works better!) is to specify
ES_WANTRETURN as part of the style for the edit control (see the Windows 3.1 SDK
documentation for details).

Aligning multi-column listboxes 92-09-15
In the resource file make sure the list box has the LBS_USETABSTOPS style. When you
add the items to the listbox, separate the fields with tabs.    You can either use the default
tab stops, or set your own by sending the LBS_SETTABSTOPS message to the listbox. For
more information, see the SDK Reference, volumes 1 and 2.

 It is also possible to use a fixed font, but the tabstop solution usually ends up looking
much better.

Changing button colors
In Windows 3.0, the button face is defined by two colors. The grey (white with EGA) face
and a dark grey (grey if ega) shadow.    The colors also change when the button goes
from a normal to pushed in state.    The WM_CTLCOLOR message only allows you to
change one color at a time so to which of the button face colors should this apply?   
(Windows 2.x button faces had only one color so it made sense.)

Maybe something tricky could have been done by using the background color for the
shadow and foreground color for the face and perhaps doing something strange to get
the text color in another way... And how do you return 2 brushes (you now need a
foreground and a background brush)?    Or maybe even better, make colors a property of
the window and some windows could have multiple color properties...

Anyway, Windows doesn't look at the WM_CTLCOLOR message for buttons and thus
doesn't allow you to change the button colors.    Try it with a listbox instead...    The only
way to change button colors is to specify ButtonColor=, ButtonShadow= and
ButtonText= in the [Colors] section of your win.ini file.   

In Windows 3.1, the button text, shadow and face colors can also be defined using the
Control Panel.

Changing the font size in a dialog 94-02-22
To change the font size of n individual control, send it a WM_SETFONT message.    If you
need to do it for all your controls in a dialog, enumerate the child windows and send the
message in the enumeration callback function.

Combo boxes with tab stops 93-01-20
Windows does not support combo boxes with tab stops.    If you need such items, you
have three choices:

· Use an owner-draw combo box.    This will allow you to draw the items at the
precise locations you need.    Text-only owner-draw controls are not difficult to
implement.

· Use GetTextExtent() to determine the length of each part, padding with blanks
until it approximately lines up.    Fairly easy, but not fast and not precise.

· Change the font of the control to either Courier or the fixed System font.    While
this is simple to do, your combo box font will not be consistent with the rest of
your dialog box controls.

Controlling color in Borland dialogs 93-04-30
Borland's custom dialog window classes do not pass through the usual WM_CTLCOLOR
messages, thus making it impossible to set control colors.    If you need to do this, you
will need to create a non-Borland dialog, paint the embossed-look background yourself,
and use Borland controls on this dialog.

Custom button bitmaps in Borland dialogs 92-11-15
To create owner-drawn buttons for new additional buttons beyond those supplied in
bwcc.dll, you first need to create the button bitmaps.    Create them 63 pixels wide by
39 deep, and number them "logically".

The bitmap numbers are related to the resource id of the button that you want to use
them.    Use the following numbers:

button id + 1000 Unpressed bitmap
button id + 3000 Pressed bitmap, VGA and higher resolutions
button id + 5000 Focused bitmap, VGA and higher resolutions

button id + 2000 Unpressed bitmap, EGA
button id + 4000 Pressed bitmap, EGA
button id + 6000 Focused bitmap, EGA

If you use these bitmap ids, bwcc.dll will use the bitmaps on the buttons automatically.

Drawing on a dialog background 93-01-20
To draw on a dialog background, you can either subclass the dialog, or, more simply,
respond to the WM_PAINT message in your dialog procedure, calling ValidateRect() after
you have redrawn the background.

Hiding dialog controls
EnableWindow(GetDlgItem(hDlg, IDD_CONTROLTOHIDE), FALSE);
ShowWindow(GetDlgItem(hDlg, IDD_CONTROLTOHIDE), SW_HIDE);
UpdateWindow(GetDlgItem(hDlg, IDD_CONTROLTOHIDE));

Listboxes with large amounts of data 92-11-15
A standard listbox is limited to 32K of data.    If you need a listbox with a larger number of
items, you can use one of the following options:

· Use an owner-draw listbox with LBS_HASSTRINGS.    This will allow 4096 items.
· Use an owner-draw listbox LBS_OWNERDRAWFIXED but without LBS_HASSTRINGS. 

This is somewhat more work, but will allow 8192 items.
Some third-party libraries also implement listbox classes which can handle huge
amounts of data.
Finally, Microsoft has a virtual listbox implementation available by ftp at ftp.uu.net, in the
directory /vendor/microsoft/developer-network.

Subclassing standard controls
You can subclass standard controls by having your own window procedure handle the
messages for the windows you create (using SetWindowLong()).    The only caveat here is
for useability: make sure that your subclassed controls don't behave in an unexpected
manner.

What is definitely a bad idea is modify the class procedure of a standard control (using
SetClassLong()) and changing the window procedure for all such windows, as this will
affect all edit controls in all applications currently running in the Windows session.

Using a window as a modal dialog 92-12-15
To use a window as a modal dialog, you will need to implement your own message loop
for that window, complete with PeekMessage(), TranslateMessage() and
DispatchMessage() calls.    This will allow you to accept events only for the current
window, discarding all other events.

Memory

Using new() in C++
In Borland C++ 2.0, and in 3.x's medium model, new() ends up calling LocalAlloc(),
allocating memory from your near 64K segment.    In BCC 3.x's large and compact
models (and in Microsoft C/C++ 7.0), however, it will make one GlobalAlloc() and do
subsegment allocations to allow you access to the full memory without making excessive
demands on the system limit of 4096 (8192 in 386 enhanced mode) global memory
handles.

Global memory owned by DLL
If you use GlobalAlloc in a DLL, the application that called the DLL will own the object.   
There is a way around this, though: allocate the memory using the GMEM_DDESHARE
flag; this will make the allocating code segment (rather than the current task) own the
memory.

Determining size of physical memory
You need to make a DPMI call to obtain that piece of information.    DPMI call 0500h with
ES:DI pointing to a 30h byte buffer returns the "Free Memory Information":

Offset Description
00h Largest available free block in bytes
04h Maximum unlocked page allocation
08h Maximum locked page allocation
0Ch Linear address space size in pages
10h Total number of unlocked pages
14h Number of free pages
18h Total number of physical pages
1Ch Free linear address space in pages
20h Size of paging file/partition in pages
24h-2Fh Reserved

The size of one page in bytes can be determined by function 0604h, which returns the
page size in bytes in BX:CX.    To call a DPMI function, invoke the interrupt 31h. Carry bit
will be clear if call was successful.

The complete DPMI 0.9 specification is available free from Intel Literature JP26, Santa
Clara.    It's also available on ftp.cica.indiana.edu.

GDI

Animation 92-10-06
If you want to do good-quality animation under Windows 3.1 without requiring that each
user have a 486/50 with an accelerated video card, you should consider using a
differential animation technique.    There is a good example available on ftp.uunet.uu.net
(and also on CompuServe) under /vendor/microsoft/multimedia/sample    called rleapp,
which uses this technique.    Another sample program in the same directory, transblt,
demonstrates a technique for doing fast BitBlits.

Both techniques are also documented in the technotes in
/vendor/microsoft/multimedia/technote.

Animation: WAP 93-04-25
Another choice for animation is to use the Windows Animation Package (WAP) developed
by Brian Goble (goble@hardy.u.washington.edu); information on the toolkit is available
by email from Brian.

Background color
If you insist on a white background, use

WinClass.hbrBackground = GetStockObject(GCW_WHITEBRUSH);
for your window background.    If it doesn't matter to you, however, you should use the
Control Panel-defined window background color instead:

WinClass.hbrBackground = CreateSolidBrush(COLOR_WINDOW + 1);

Changing palette entries in 16-color mode
If you are using a standard driver, you will need to bypass Windows to do it (if you
happen to have a 16-color driver which support palettes, you can use standard Windows
palette management functions).   

Microsoft will tell you to buy the DDK, but there is another way.    Now, the Windows
system palette maps onto the VGA 16-color palette as follows:

VGAPAL SYSPAL VGAPAL SYSPAL
00 00 08 07
01 01 09 13
02 02 10 14
03 03 11 15
04 04 12 16
05 05 13 17
06 06 14 18
07 12 15 19

So you can define some macros to take care of the mapping:

#define syspal(n) (n<7 ? n : (n>8 ? n+4 : (n=7 ? 12 : 7)))
#define vgapal(n) (n<7 ? n : (n>12 ? n-4 : (n=7 ? 8 : 7)))
                 
When you get a WM_SETFOCUS event, save the current state of the hardware colormap
and installs the one you want.    When you get a WM_KILLFOCUS event, restore the
original palette. Don't use the palette registers directly, though, just modify the color
registersthat they point to.    (For details on    redefining a VGA palette, see a book such
as A Programmer's Guide to PC and PS/2 Video Systems by Richard Wilton.)

DIB bitmaps 92-10-07
Microsoft has higher-level DIB library and DLL available for downloading from
CompuServe.    Unfortunately, it is not currently available by ftp.

Speeding up WM_PAINT redraws
To speed up your WM_PAINT processing, you may want to use a technique similar to the
following one, as presented by John Grant (jagrant@emr1.emr.ca):

There are two reasons for redrawing your window:
·      because Windows tells you to do it
·      because something application specific requires it

You shouldn't have to redraw everything from scratch every time you get a WM_PAINT
message - just save it as a bitmap and repaint from the bitmap.    However, there are
cases when the bitmap becomes invalid and you have to re-paint the hard way.

In the main window WndProc, I respond to Windows messages as follows (note there may
be other code too, I just put in the stuff relevant to the redraw):

case WM_CREATE: KillBitmap();
break;

case WM_SIZE: KillBitmap();
break;

case WM_PAINT: DrawMyPicture(hwnd);
break;

case WM_DESTROY: KillBitmap();
PostQuitMessage(0);
break;

Notice that you should not do KillBitmap() when I handle WM_PAINT.    If, in response to an
application-specific condition, you want to force a redraw, do the following:

KillBitmap();
InvalidateRect(hwnd,NULL,TRUE); // generates WM_PAINT

Now, for an application specific sample code fragment:

// global variable
static HBITMAP hbitmap_main = NULL;

void DrawMyPicture(HWND hwnd)
{
        PAINTSTRUCT ps;
        HDC hdc;

        hdc = BeginPaint(hwnd, &ps);
        if (hbitmap_main == NULL){

          DrawMyPictureTheHardWay(hwnd, hdc);
                hbitmap_main = SaveClientAreaAsBitmap(hwnd);
        } else {
                  DrawBitMap(hdc, hwnd, 0, 0, hbitmap_main);
        }
        EndPaint(hwnd,&ps);
}

void KillBitmap(void)
{
        if (hbitmap_main != NULL){
              DeleteObject(hbitmap_main);

              hbitmap_main = NULL;
        }
}

Don't use PAINTSTRUCT.rcPaint which describes the area that Windows says needs
repainting; just BitBlt the whole thing and Windows will clip it.    No, it's not overkill - it's
fast!

Finally, two routines that you can put in your library for use with all your apps.

/*---*
 | save entire client area of window into a bitmap                                  |
 ---/

HBITMAP SaveClientAreaAsBitmap(HWND hwnd)
{
RECT rect;
HDC hdc,hmemdc;
HBITMAP hbitmap,old_hbitmap;

hbitmap=NULL;
hmemdc=NULL;
hdc=NULL;

//get source device context for the client area
hdc=GetDC(hwnd);
if(hdc==NULL) goto done;

//get destination memory hdc compatible with client area
hmemdc=CreateCompatibleDC(hdc);
if(hmemdc==NULL) goto done;

//create compatible bitmap for client area
GetClientRect(hwnd,&rect);            //.top & .left are both 0
hbitmap=CreateCompatibleBitmap(hdc,rect.right,rect.bottom);
if(hbitmap==NULL) goto done;

//select client area bitmap into device context so we can write on it
old_hbitmap=SelectObject(hmemdc,hbitmap);

//and copy it to the new hmemdc
BitBlt(hmemdc,0,0,                          //destination (x,y)

rect.right,rect.bottom, //width, height
hdc,0,0,                                //source (x,y)
SRCCOPY);

//all done
SelectObject(hmemdc,old_hbitmap);

done:      if(hdc      !=NULL) ReleaseDC(hwnd,hdc);
if(hmemdc!=NULL) DeleteDC(hmemdc);

return(hbitmap);
}

/*--*
 | Draw a bitmap into the current device context.                                  |
 | This is essentially the same as Petzold's code.                                |
 --/
void DrawBitMap(HDC hdc,int xleft,int ytop,HBITMAP hbitmap)
{
RECT        rect;
HDC          hmemdc;
BITMAP    bm;
POINT      point;
HBITMAP old_hbitmap;

hmemdc=NULL;
old_hbitmap=NULL;

//create memory device context & select bitmap
hmemdc=CreateCompatibleDC(hdc);
if(hmemdc==NULL) goto done;
old_hbitmap=SelectObject(hmemdc,hbitmap);

SetMapMode(hmemdc,GetMapMode(hdc));          //same as for hdc

//get bitmap dimensions & convert to logical
GetObject(hbitmap,sizeof(bm),&bm);
point.x=bm.bmWidth;
point.y=bm.bmHeight;
DPtoLP(hdc,&point,1);                                     

BitBlt(hdc,xleft,ytop,                                    //destination
point.x,point.y,                                //width, height
hmemdc,0,0,  //source
SRCCOPY);

done:      if(old_hbitmap!=NULL) SelectObject(hmemdc,old_hbitmap);
if(hmemdc!=NULL) DeleteDC(hmemdc);
return;

}

Using CMY colors instead of RGB 93-01-20
To use CMY colors with the Windows GDI instead of RGB, you can define the following
macro to supplement the standard RGB one:

#define    CMY(c, m, y)          RGB(255 - c, 255 - m, 255 - y)

Using only solid colors 92-11-15
If you want to use only solid colors (that is, get the nearest solid color to the one you
specified), use the GetNearestColor()    function call to map an RGB value to a solid cor
available in the current color palette.    Also, if you are using a palette, you can call the
PALETTERGB(r,g,b) macro instead of the usual RGB(r,g,b) to map to the nearest color in
the palette.

Text and fonts

Creating new fonts 93-01-20
To create new TrueType fonts, you will need a commercial package such as Fontographer
or FontMonger.    While FontMonger is a more limited tool, it is quite inexpensive and
often sufficient for smaller projects.    Fontographer is a semi-professional tool with a
higher price tag.    Neither tool allows you to construct your own hints for small point
sizes.

Determining font sizes 94-02-25
Unfortunately Windows LOGFONT structure sets the font height using device units and
not actual point sizes, and the common font dialog returns the selected size in the same
units.    This means that you need to do conversions similar to the ones shown below:

iDevRes = GetDeviceCaps(hDC, LOGPIXELSY);
iPointSize = MulDiv(iDeviceSize, 72, LOGPIXELSY);   

or
iDevRes = GetDeviceCaps(hDC, LOGPIXELSY);
iDeviceSize = MulDiv(iPointSize, LOGPIXELSY, 72);   

Rotating fonts 93-01-20
First, you cannot rotate screen fonts.    Effectively this means that you can only rotate
TrueType and Type 1 (ATM) fonts.    To do the rotation, you will have to create a new
logical font with the correct escapement value.    Select the font into the display context,
do your displaying, select the original font back in, and delete the font object.

Note that Type 1 fonts, which are considered device fonts, use a reversed direction for
the rotation from TrueType fonts; you'll have to check the font type before doing the
rotation, or otherwise you will have some fonts angled up and others down.

TrueType width calculation 92-11-03
The most accurate widths for TrueType fonts can be obtained using the following method
(courtesy of Glenn Adams (glenn@wheat-chex.ai.mit.edu)):
1. Using EnumFonts() (or EnumFontFamilies()), obtain lpntm->ntmSizeEM.    This value

"specifies the size of the em square for the font, in the units for which the font was
designed (notional units)."    Most fonts will have the value of 2048.

2. Create a font using the above size as the lfHeight.    This will create a font with
metrics that coincide with the coordinate space used in the font's design, i.e., no
scaling will occur in the logical coordinate space.

3. Use GetCharABCWidths() to get the ABC width structures for all the font's glyphs.   
You can now compute the widths quite accurately, along with overhang and
overhang.    Keep in mind that the horizontal escapement (i.e., the distance current
point is advanced after rendering a glyph) is equal to A + B + C of the returned
widths.    If A is negative, the glyph extends outside the EM square to the left; if C is
negative, then the glyph extends outside the EM square to the right.

One last point: the above widths will not take into account grid fitting, which will occur in
actual display.    But, if you set the mapping mode to MM_ISOTROPIC and use a logical
coordinate space which coresponds to the font design size, you can do all your layout
computations using design sizes without regard to final viewport mapping.

Kernel and low-level programming

Activating the previous instance 93-01-20
If you want to run only a single instance of your application, and activate the first
instance when the user tries to run a second one, use the following code at the
beginning of your WinMain function:

        if (hPrevInstance) {
                BringWindowToTop(FindWindow("MyClassName", NULL));
                return(FALSE);
        }
Note that the value of hPrevInstance will always be NULL on Windows NT.

VxD development 94-02-25
To develop VxDs, you will need to either purchase the Windows DDK (Device Driver Kit)
or subscribe to the Microsoft Developer Network CD-ROM Level 2, which includes all of
Microsofts SDKs and DDKs, as well as a plethora of developer information.    If you own a
CD-ROM drive, you should likely purchase the MSDN/L2, as the cost of the DDK alone is
almost the same as that of the CD-ROM subscription.

VxD technical notes and samples 94-02-25
The following technical notes are available by ftp from ftp.microsoft.com:

Q29519.txt    10-92.zip Writing an Installable Driver technical article
Q97373.txt    10-50.zip The VxD-Lite Mini-DDK technical article
Q97323.txt    7-9.zip VIdleD: A VxD that Demonstrates the Call_When_Idle service
Q97322.txt    7-8.zip VHook86D: A VxD that Hooks Interrupt 2Fh in V86 Mode
Q97321.txt    7-7.zip VFIntD: A VxD that Captures Floppy Disk Interrupts
Q97320.txt    7-6.zip VDialog: A VxD that Demonstrates How to Serialize I/O
Q97319.txt    7-3.zip GPTrap: A VxD that Traps GP Faults
Q97318.txt    7-2.zip Generic: Illustrates the Basic Structure of a VxD
Q97317.txt    7-19.zip VxD Tools: Used for Building Virtual Devices
Q97316.txt    7-18.zip VxD Include Files: Used for Building Virtual Devices
Q97315.txt    7-17.zip VWFD: A VxD that Reports a VM's Windowed vs. Full-Screen
State
Q97314.txt    7-16.zip VWatchD: Illustrates the Basic Structure of a VxD
Q97313.txt    7-15.zip VNMID: A VxD that Hooks the Non-Maskable Interrupt
Q97312.txt    7-14.zip VMPages: A VxD that Exports a VMM Service to an Application
Q97311.txt    7-13.zip VMIRQD: A VxD that Virtualizes a Hardware Interrupt
Q97310.txt    7-12.zip VMIOD: A VxD that Monitors I/O Traffic on a Port
Q97309.txt    7-11.zip VKXD: A VxD that Simulates the ALT+ENTER Key Combination
Q97308.txt    7-10.zip VITD: A VxD that Simulates an Interval Timer Device
Q97307.txt    7-1.zip Eatpages: A VxD that Consumes Physical Pages

VFOOD.ZIP A Basic Windows Virtual Device
RING0.ZIP MSJ Source: May 1993
VXD.ZIP MSJ Source: October 1992
VXD1.ZIP MSJ Source: February 1993

The file locations are the following:
Q*.txt /devtools/winsdk/kb
7-*.zip: /msdn/vxdsamp
10-*.zip: /msdn/vxdsamp
*.zip /softlib/mslfiles

VxD developer documentation 94-02-25
The development of VxDs (virtual device drivers) is closely related to device driver
development.    The following is a partial list of VxD development resources:
· Microsoft Developers Network CD.    Microsoft Corp.
· Norton, Daniel A.: Writing Windows Device Drivers.    Addison-Wesley. ISBN 0-201-

57795-X
· Pietrek, Matt: Microsoft Systems Journal.    Run Privileged code from Your Windows-

based Program Using Call Gates.    May 1993.
· Salter, Bret: Dr. Dobbs Journal.    An Exception Handler for Windows 3.    September

1992.
· Schulman, Andrew: Microsoft Systems Journal.    Go Anywhere, Do Anything with 32-

bit Virtual Device Drivers for Windows.    October 1992.
· Schulman, Andrew: Microsoft Systems Journal.    Exploring Demand-Paged Virtual

Memory in Windows Enhanced Mode.    December 1992.
· Schulman, Andrew: Microsoft Systems Journal.    Call VxD Functions and VMM Services

Easily Using Our Generic VxD.    February 1993.
· Smith, Gordon: Microsoft Systems Journal.    Embedded Device Drivers simplify the

support of unusual devices under Windows.    May 1991.
· Thielen, David: Windows Tech Journal.    Various articles, April 1992 to August 1992.
· Thielen, David and Bryan Woodruff: Writing Windows Virtual Device Drivers.   

Addison-Wesley, 1993, $43.95. ISBN 0-201-62706-X.

Getting the instance handle 92-09-28
In general, it's usually best to store the instance handle in a global variable, so that it will
always be available.    If, however, you don't have it handy, you can get it with an easy
Windows API call:

GetWindowWord(hWnd, GWW_HINSTANCE)

I/O ports and Windows 94-02-25
Windows generally works fine with I/O commands (putc, getc, putw and getw), and
problems with I/O usually involve card configuration problems.

· Take care to avoid electro static discharge damage.

· Check you card addresses carefully.    Some cards use switches that are "1" or "on" in
the off or down position.    Remember that card addresses are usually set in
hexadecimal.    Avoid addresses less than 0x100, as your system my have some
devices down there.

· Most cards reserve multiple output ports; make sure your card does not conflict with
other cards or the system.    Typically cards reserve a power of 2 ports: 2, 4, 8, 16, 32
or more.    Align card adresses to multiples of the required ports.    A 16 decimal port
card will have and address like 0xnn0.    Don't overlap a card even if it uses less than
a power of 2 ports.    For example if a card reserves 12 decimal ports at address
0x110 then the next available port is 0x120.    Don't try to sneak a 4 port card in at
0x11C.

· Make sure the other switches/jumpers on your card are configured properly.

· If necessary remove other cards to trouble-shoot.    A hardware problem with one card
can interfere with other cards.

Thanks to Larry Kucera.

Restarting Windows 92-10-05
To restart Windows, use:

ExitWindows(EW_RESTARTWINDOWS, 0)

Rebooting the system 92-10-05
To reboot the entire system, use:

ExitWindows(EW_REBOOTSYSTEM, 0)

OLE and DDE

Applying OLE technology 94-03-10
The Microsoft Internet anonymous ftp server ftp.microsoft.com now contains OLE-info.*
(in RTF, EPS, Word 2 and Word 6 formats). This is a 65 page document called "How To
Apply OLE 2 Technology in Applications", which has two sections.

The first section lists various application categories, like database, DTP, spreadsheet,
drawing/CAD, etc., and how applications that call into such categories might use each
OLE 2 technology (component objects, compound files, data transfer Drag & Drop,
automation, and compound documents). Some applications, of course, are not suitable
for using all technologies, so this section helps you decide what is really important for
your application.

The second section contains all the same information, but organized instead by OLE 2
technology, explaining how each application category would use that specific technology.
This is useful for evaluating the full value of a given technology in OLE 2 for multiple
applications, and gives you a few ideas on what sorts of interesting things you might do
with the technology.

OLE resources on ftp.microsoft.com 94-03-19
The following list contains a brief description of the OLE 2 resources available from
ftp.microsoft.com.

· /drg/ole-info/inside-ole2-code-update
An update to the source code from Inside OLE 2 by Kraig Brockschmidt.

· /drg/ole-info/applying-ole
A guide to applying OLE 2 technology.

· /drg/ole-info/background/decolepr.doc
Microsoft-DEC Common Object Model agreement.

· /drg/ole-info/background/mfc25.doc
A backgrounder on MFC 2.5s OLE 2 classes.

· /drg/ole-info/background/olebg.doc
OLE 1 background, mostly of historical interest.

· /drg/ole-info/background/olecom.doc
Distributed OLE backgrounder.

· /drg/ole-info/background/ olemngbg.doc
OLE 2 backgrounder for management and non-technical staff.

· /drg/ole-info/background/oletech.doc
A technical OLE backgrounder with more technical info and less hype.

· /drg/ole-info/background/olevisbg.doc
Common Object Model vision backgrounder.

· /drg/ole-info/ole201
OLE 2.01 documentation, including the Design Specification.

Using NetDDE 92-12-20
To use an existing DDE application over the network you simply need to create a DDE
share for it with a separate utility.    The DDE share you create refers to a specific Service|
Topic pair, and when a client connects to that share, it is as if they had connected to the
underlying Service|Topic.    (The DDEShare tool that comes with the Windows for
Workgroups resource kit will do this.)    From the client application you simply connect to   
\\MachineName\NDDE$|DDEShareName instead of Service|Topic.

Thanks to Blake Coverett of Microsoft Canada for this information.

Miscellaneous

Accessing C++ classes in a DLL 93-03-40
It's definitely possible to access C++ classes which are implemented in a DLL.    The
following methods are possible:

· Use extern "C" function definitions, and manually create a .def file for the C-
defined functions in the DLL, and then use ImpLib (in the Windows SDK) to
create a .lib file for the DLL.

· Use standard C++ function definitions, and manually create a .def file for the
mangled C++ function names in the DLL, and then use ImpLib to create a .lib
file for the DLL.

Changing your current directory
The easy way is to use DlgDirList().    You can specify zero for the two ID fields.    You can
use the current window ID for the dialog handle field.   

The standard C library functions chdir() and getcwd() can also be used.

Detecting idle time 93-05-08
The 'idle-detecting' message loop may suit your case.    That is, replace the standard
while(GetMessage()) ... in WinMain() with the something like the following (thanks to
Risto Lankinen for the example and to Raymond C. at Microsoft for the warning note):

if (PeekMessage(&msg)) {
        // The queue contains messages - process them
        // GetMessage() would automatically detect WM_QUIT, but
        // we must explicitly check for it.
        if (msg.message == WM_QUIT)
                break;
        if (TranslateAccelerator(hWnd,hAcc,&msg))
                continue;

        TranslateMessage(&msg);
        DispatchMessage(&msg);

        // You might want to save the last time a message
        // was processed
        dwLastMsgTime = GetTickCount();
} else {
        // The queue is empty - user is doing nothing with *this* app
        if (GetTickCount() < dwLastMsgTime) {
                // Timer wrapped around -- do something!
        } else if (GetTickCount() - dwLastMsgTime > MSGTIMEDELTA) {
                // Do something funky
        }

Note that since the application is now PeekMessage-based, Windows itself will never go
idle.    (This is explicitly mentioned in the SDK under PeekMessage.)    This has at least two
consequences.

· In enhanced mode, DOS applications will not receive as much CPU as they might
otherwise, since some of the CPU is being spent by Windows.

· If you are running a laptop computer, the automatic power-save function will
never kick in.

Enumerating active processes 92-12-15
To enumerate the processes currently active in the system (to build a process tree,
create a task manager or otherwise), you should use TaskFirst(), TaskNext() and IsTask().   
All of these are included in toolhelp.dll, a redistributable component of the Windows 3.1
SDK..

Extracting icons from a .EXE or .DLL
In Windows 3.1, it's easy to enumerate the icons in a Windows EXE or DLL even if you
don't already know their names.    SHELL.DLL exports

HICON ExtractIcon(hInst, lpszExeName, nIcon)
This function returns a handle to the specified icon (where 0 is the default icon displayed
by Program Manager), or the number of icons in the file if you pass in an index of -1.   

Better yet, SHELL.DLL also exports the function:
FindExecutable(lpszFile, lpszDir, lpszResult)

which will give you the executable associated with a given document file.    You can then
extract the appropriate icon from that file.

Finding the directory: application program 92-09-28
To locate your executable program directory , use:

GetModuleFileName(hInstance, (LPSTR) szPath, sizeof(szPath));

Finding the directory: initial 93-04-30
To locate your initial directory , use:

_getcwd(szPath, sizeof(szPath));

In Visual Basic, you can use the CurDir$ variable.

Finding the directory: system 93-04-30
To locate your Windows system directory , use:

_getcwd(szPath, sizeof(szPath));
GetWindowsDir(szPath, szWinPath, sizeof(szWinPath));
GetSystemDir(szWinPath, szSysPath, sizeof(szSysPath)));

Finding the directory: Windows 93-04-30
To locate your Windows directory , use:

_getcwd(szPath, sizeof(szPath));
GetWindowsDir(szPath, szWinPath, sizeof(szWinPath));

Finding the number of instances running
Use the following code:

nNumInsts = GetModuleUsage(hInstance);

Note that this will always return 1 within Windows NT.

Multimedia RIFF file format 92-09-15
The IBM/Microsoft RIFF and MCI definition document is available for anonymous ftp
download from the /vendor/microsoft/multimedia directory on ftp.uu.net. If you don't
have anonymous ftp access, try CompuServe in the WINSDK forum, or Microsoft Online.

The document describes multimedia interfaces (MCI) and data formats (RIFF).    IBM has
committed to include support for these in OS/2.    These interfaces are already supported
in the Multimedia Extensions for Windows (MME) and Windows 3.1.    Included in the RIFF
file format is a waveform (.WAV) audio definition; this format is the system standard for
Windows and OS/2.

Using CARDS.DLL for your own games 93-04-30
The following include files document the interface to cards.dll, allowing you to access
the card functionality in your own games.    Note, however, that cards.dll is copyrighted
by Microsoft and can't be freely distributed.    However, if all your users have a Windows
Entertainment Pack, you're all set!

Thanks to Heath Ian Hunnicutt (heathh@cco.caltech.edu) for disassembling CARDS.DLL
and coming up with the basis for this documentation.

· cards.h
#include "crd.h"

/*
 *    cdtInit: Initializes the cards module
 *
 *    pdxCard: receives the width of the card
 *    pdyCard: receives the height of the card
 *    returns: success or failure
 */
BOOL FAR PASCAL cdtInit(int FAR *pdxCard, int FAR *pdyCard);

/*
 *    cdtDrawExt: Draw a card with specified extents (size)
 *
 *    x, y:        location to draw the card
 *    dx,dy:      size to be drawn
 *    cd:            card to be drawn
 *    mode:        transfer mode
 *    returns: success or failure
 */
BOOL FAR PASCAL cdtDrawExt(HDC hdc, int x, int y, int dx, int dy,

int cd, int mode, DWORD rgbBgnd);

/*
 *    cdtDraw: Draw a card
 *
 *    x, y:        location to draw the card
 *    cd:            card to be drawn
 *    mode:        transfer mode
 *    returns: success or failure
 */
BOOL FAR PASCAL cdtDraw(HDC hdc, int x, int y, int cd, int mode,

      DWORD rgbBgnd);

/*
 *    cdtTerm: terminates and cleans up the cards module
 */
void FAR PASCAL cdtTerm();

· cdt.h
#define CLOADMAX 5

/* Command ids */
#define IDACLUBS 1
#define ID2CLUBS 2

#define ID3CLUBS 3
#define ID4CLUBS 4
#define ID5CLUBS 5
#define ID6CLUBS 6
#define ID7CLUBS 7
#define ID8CLUBS 8
#define ID9CLUBS 9
#define IDTCLUBS 10
#define IDJCLUBS 11
#define IDQCLUBS 12
#define IDKCLUBS 13

#define IDADIAMONDS 14
#define ID2DIAMONDS 15
#define ID3DIAMONDS 16
#define ID4DIAMONDS 17
#define ID5DIAMONDS 18
#define ID6DIAMONDS 19
#define ID7DIAMONDS 20
#define ID8DIAMONDS 21
#define ID9DIAMONDS 22
#define IDTDIAMONDS 23
#define IDJDIAMONDS 24
#define IDQDIAMONDS 25
#define IDKDIAMONDS 26

#define IDAHEARTS 27
#define ID2HEARTS 28
#define ID3HEARTS 29
#define ID4HEARTS 30
#define ID5HEARTS 31
#define ID6HEARTS 32
#define ID7HEARTS 33
#define ID8HEARTS 34
#define ID9HEARTS 35
#define IDTHEARTS 36
#define IDJHEARTS 37
#define IDQHEARTS 38
#define IDKHEARTS 39

#define IDASPADES 40
#define ID2SPADES 41
#define ID3SPADES 42
#define ID4SPADES 43
#define ID5SPADES 44
#define ID6SPADES 45
#define ID7SPADES 46
#define ID8SPADES 47
#define ID9SPADES 48
#define IDTSPADES 49
#define IDJSPADES 50
#define IDQSPADES 51
#define IDKSPADES 52

#define IDGHOST53

#define IDFACEDOWN1 54
#define IDFACEDOWN2 55
#define IDFACEDOWN3 56
#define IDFACEDOWN4 57
#define IDFACEDOWN5 58
#define IDFACEDOWN6 59
#define IDFACEDOWN7 60
#define IDFACEDOWN8 61
#define IDFACEDOWN9 62
#define IDFACEDOWN10 63
#define IDFACEDOWN11 64
#define IDFACEDOWN12 65

#define IDFACEDOWNFIRST IDFACEDOWN1
#define IDFACEDOWNLAST IDFACEDOWN12

#define IDX 67
#define IDO 68
#define IDMAX IDDECK

/* internal IDs for animation */
#define IDASLIME1 678
#define IDASLIME2 679
#define IDAKASTL1 680
#define IDAFLIPE1 681
#define IDAFLIPE2 682
#define IDABROBOT1 683
#define IDABROBOT2 684

/* Red non-face card frame */
#define IDFRAME 999

#define FACEUP 0
#define FACEDOWN 1      /* for compatibility with old apps, use

 IDFACEDOWNFIRST..IDFACEDOWNLAST */
#define HILITE 2
#define GHOST 3
#define REMOVE 4
#define INVISIBLEGHOST 5
#define DECKX 6
#define DECKO 7

· crd.h
#include "cdt.h"

typedef int CD;

// CaRD struct, this is what a card be
typedef struct _crd {

unsigned cd    : 15; // card # (1..52)
unsigned fUp : 1; // is this card up/down
PT pt; // upper-left corner of card
} CRD;

/* WARNING: Order of su's is assumed */
#define suClub 0
#define suDiamond 1
#define suHeart 2
#define suSpade 3
#define suMax 4
#define suFirst suClub

#define raAce 0
#define raDeuce 1
#define raTres 2
#define raFour 3
#define raFive 4
#define raSix 5
#define raSeven 6
#define raEight 7
#define raNine 8
#define raTen 9
#define raJack 10
#define raQueen 11
#define raKing 12
#define raMax 13
#define raNil 15
#define raFirst raAce

typedef int RA;
typedef int SU;

#define cdNil 0x3c

#define cIDFACEDOWN (IDFACEDOWNLAST-IDFACEDOWNFIRST+1)

#define SuFromCd(cd) ((cd)&0x03)
#define RaFromCd(cd) ((cd)>>2)
#define Cd(ra, su) (((ra)<<2)|(su))

Waiting for completion of WinExec() 93-01-20
If you need to wait for the completion of a WinExec()'d process, Microsoft's
recommended approach is to use the functions in toolhelp.dll (a free redistributable
part of the Windows 3.1 SDK) to register a notification callback routine, which will then
get called once the WinExec()'d application terminates.

Wsprintf and sprintf
wsprintf() can not print floating-point numbers by design.    To print floating-point,
you must use sprintf().    Remember, though, that all strings passed to wsprintf() should
be cast to FAR!

Development tool specific issues

Borland ObjectWindows Library

A dialog as an MDI child window [Borland OWL] 93-01-20
If you want to use a dialog as an MDI child window, you can use the following code as the
basis of your own implementation.    Thanks to Martin Calsyn (martin@iastate.edu) for
the sample code.

What follows are three files:
TMDIDLOG.H The interface for modeless MDI-child dialogs.
TMDIDLOG.CPP The implementation of same
EXAMPLE.CPP An (partial) example of using the TMDIDLOG classes.

You need to sub-class TMDIDialogWindow in order to give your MDI child a unique icon,
etc (not shown in the example) and to implement the CreateChildDialog abstract
method.    And, of course, you need to sub-class TMDIDialog in order to establish a
transfer structure, interface objects and all the things you usually do with sub-classes of
TDialog.

The classes included below work by presenting the dialog as a child of a TBWindow which
is itself a child of the MDI.    These classes are based on tips and suggestions offered by
the Borland advisor line.

Martin claims that the transfer of this technique to MS MFC is trivial.

---------------------------- TMDIDLOG.H -------------------------

#ifndef __tmdidlog_h__
#define __tmdidlog_h__

#include <owl.h>
#include <bwindow.h>

_CLASSDEF(TMDIDialog)
_CLASSDEF(TMDIDialogWindow)

class TMDIDialog : public TDialog
{
public:
        TMDIDialog(PTWindowsObject AParent,LPSTR AName,PTModule AModule=NULL) :
        TDialog(AParent, AName, AModule) {};
        TMDIDialog(PTWindowsObject AParent,int ResourceId,PTModule AModule=NULL):
        TDialog(AParent, ResourceId, AModule) {};
        virtual void WMSetFocus(RTMessage Msg) = [WM_FIRST + WM_SETFOCUS];
        virtual void CloseWindow(int ret);
        virtual void CloseWindow();
        virtual void Cancel(RTMessage msg) = [ID_FIRST + IDCANCEL];

        friend class TMDIDialogWindow;

protected:
        TMDIDialogWindow *mdiw;
};

class TMDIDialogWindow : public TBWindow
{
public:
        TMDIDialogWindow(PTWindowsObject aParent,LPSTR aName,

  PTModule aModule = NULL);
        virtual void WMMDIActivate(RTMessage Msg) = [WM_FIRST + WM_MDIACTIVATE];
        virtual void WMSetFocus(RTMessage Msg) = [WM_FIRST + WM_SETFOCUS];
        virtual void WMSize(RTMessage Msg) = [WM_FIRST + WM_SIZE];
        virtual void SetupWindow();
        virtual LPSTR GetClassName() { return "_TMDIDialogWindow"; };
        virtual void GetWindowClass(WNDCLASS& aWndClass);
        virtual void WMGetMinMaxInfo(RTMessage msg) = [WM_FIRST +
WM_GETMINMAXINFO];
        virtual TMDIDialog *CreateChildDialog() = 0;

private:
        PTMDIDialog dlog;
};

#endif

------------------------- TMDIDLOG.CPP --------------------------

#include "tmdidlog.h"

TMDIDialogWindow::TMDIDialogWindow(PTWindowsObject aParent,
 LPSTR aName,
 PTModule aModule) :

          TBWindow(aParent,aName,aModule)
{
        dlog = NULL;
        GetApplication()->SetKBHandler(this);
        SetFlags(WB_KBHANDLER, FALSE);
}

void TMDIDialogWindow::WMMDIActivate(RTMessage Msg)
{
        TWindow::WMMDIActivate(Msg);

        if (Msg.WParam == TRUE) {
                GetApplication()->SetKBHandler(this);
                if (dlog!=NULL)
                        SetFocus(((PTDialog)dlog)->HWindow);
        }
}

void TMDIDialogWindow::GetWindowClass(WNDCLASS& aWndClass)
{
        TWindow::GetWindowClass(aWndClass);
}

void TMDIDialogWindow::WMSetFocus(RTMessage Msg)
{
        PostMessage(HWindow, WM_MDIACTIVATE, TRUE, 0L);
        DefWndProc(Msg);
}

void TMDIDialogWindow::SetupWindow()
{

        TWindow::SetupWindow();

        dlog = CreateChildDialog();
        if (dlog) {
                dlog->mdiw = this;
                RECT r;
                GetApplication()->MakeWindow(dlog);
                SetFocus(dlog->HWindow);
                GetWindowRect(HWindow,&r);
                Attr.X = r.left;
                Attr.Y = r.top;
                GetWindowRect(dlog->HWindow,&r);
                AdjustWindowRect(&r,WS_CAPTION|WS_BORDER,0);
                Attr.W = r.right - r.left;
                Attr.H = r.bottom - r.top;
                MoveWindow(HWindow,Attr.X, Attr.Y, Attr.W, Attr.H, 1);
        }
}

void TMDIDialogWindow::WMGetMinMaxInfo(RTMessage msg)
{
        if (dlog) {
                MINMAXINFO *lpmmi = (MINMAXINFO *)msg.LParam;
                RECT r;
                POINT pt1,pt2;
                GetWindowRect(HWindow,&r);
                pt1.x = r.left;
                pt1.y = r.top;
                GetWindowRect(dlog->HWindow,&r);
                AdjustWindowRect(&r,WS_CAPTION|WS_BORDER,0);
                pt2.x = r.right - r.left;
                pt2.y = r.bottom - r.top;
                lpmmi->ptMaxSize = pt2;
                lpmmi->ptMaxPosition = pt1;
                lpmmi->ptMinTrackSize = pt2;
                lpmmi->ptMaxTrackSize = pt2;
        }
}

void TMDIDialogWindow::WMSize(RTMessage Msg)
{
        RECT r;
        TWindow::WMSize(Msg);
        if (!IsIconic(HWindow)) {
                GetWindowRect(dlog->HWindow,&r);
                AdjustWindowRect(&r,WS_CAPTION|WS_BORDER,0);
                Attr.W = r.right - r.left;
                Attr.H = r.bottom - r.top;
                MoveWindow(HWindow, Attr.X, Attr.Y, Attr.W, Attr.H, 1);
        }
}

//
//    TMDIDialog methods...
//

void TMDIDialog::WMSetFocus(RTMessage Msg)
{
        GetApplication()->SetKBHandler(this);
        DefWndProc(Msg);
}

void TMDIDialog::CloseWindow(int ret)
{
        TDialog::CloseWindow(ret);
        mdiw->CloseWindow();
}

void TMDIDialog::CloseWindow()
{
        TDialog::CloseWindow();
        mdiw->CloseWindow();
}

void TMDIDialog::Cancel(RTMessage msg)
{
        CloseWindow(IDCANCEL);
}

-------------------------- EXAMPLE.CPP --------------------------

//
//    #include owl, tmdidlog.h and others as needed
//

//
//    ChildDialog is a dialog box defined in the RC file under
//        the name 'MY_DLOG'.    The definition of MY_DLOG is pretty plain
//        except that it should have the following attributes:
//                            STYLE WS_CHILD | WS_VISIBLE
//        and optionally CLASS "BORDLG"
//    That is, it should have no caption, sys menu, or border of any
//    type.    It should also have an origin of 0,0 otherwise it will
//    be offset within the MDI child window.
//
//    An instance of ClientDialog can be created as a modeless MDI
//    client by doing : `new ChildDialogWindow(this, "Title", NULL)'
//    from your MDI frame object or other appropriate place.
//

class ChildDialog : public TMDIDialog
{
public:
        ChildDialog(PTWindowsObject aParent,
                                  LPSTR aName, PTModule aModule = NULL);

};

ChildDialogWindow::ChildDialogWindow(PTWindowsObject aParent,LPSTR aName,
  PTModule aModule)

: TMDIDialogWindow(aParent,aName,aModule)
{
        obj_id = object_id;
}

TMDIDialog* ChildDialogWindow::CreateChildDialog()
{
        return (TMDIDialog*)new ChildDialog(this,(LPSTR)"MY_DLOG",NULL);
}

ChildDialog::ChildDialog(PTWindowsObject aParent,
  LPSTR aName, PTModule aModule)

: TMDIDialog(aParent,aName,aModule)
{
        // The usual stuff:    Initialize the transfer structure, create
        //    interface objects, etc.

}

Microsoft Foundation Classes

Disabled menu choices become enabled 93-04-25
By default, a disabled menu choice become enabled as soon as you add an
ON_COMMAND handler for it.    To make the menu item stay disabled, you will need to
disable it in the ON_UPDATE_COMMAND_UI handler.

Listbox contents not available after dialog 94-02-25
Using a dialog class's listbox member similar to the following

if (DoDialog() == IDOK)
iChoice = mListBox.GetSelection();

will not work.    Even though the class members exist after the DoDialog, the dialog
window has been destroyed, and its contents (the controls) with it.

Maximizing the initial window 94-02-25
In the "InitInstance" code, where you create the main window, add code something like
this:

CMainFrame* pMainFrame = new CMainFrame;
if (!pMainFrame->LoadFrame(IDR_MAINFRAME, dwStyle))

return FALSE;
pMainFrame->ShowWindow(SW_SHOWMAXIMIZED);
pMainFrame->UpdateWindow();

Sluggish menus when menu prompts missing 93-07-15
If the menus in your MFC2 application appear very sluggish whenever there are one or
more menu items without prompts, there is nothing to worry about.    MFC is simply
attempting to write debugging messages on the debugging device (AUX).    These
messages do not appear (and thus the menus are not sluggish) if the code is complied
with the release option instead of debug.

You can use a driver for a second monitor, connect a serial terminal to COM2, or run
DebugWin to catch the warning messages.

Using CTL3D with MFC 93-04-30
The current version of ctl3d.dll is not supported for use with the Microsoft Foundation
Classes; Microsoft is working on an update that will be fully compatible.    However, you
can use the current version, too, with no apparent problems (except the inability to use a
message map outside of a dialog box).    While dialogs automatically receive the 3-D
effect, you can use the following technique outside of dialogs:

· Create a new class which inherits from the logical control class. (For example,
class C3dStatic : public CStatic).

· Overload create() to do the following.
1. Get a HWND using ::CreateWindow("Static"...
2. Do the stuff desribed in the ctl3d help file section about using non-dialog

controls without MFC
3. do a CWnd::Attach(HWND)

· Remeber to do a detach() in the ~C3dStatic

Turbo Pascal for Windows

Using CTL3D.DLL with Turbo Pascal 93-01-20
To use the ctl3d.dll (which provides a standardized 3-D look to all your dialogs, similar to
Microsoft Excel 4.0) with Turbo Pascal, you'll need a unit file.    The unit file and example
below were contributed by Andreas Furrer (s_furrer@ira.uka.de).

CTL3D.PAS

(**)
(*      Unit CTL3D  *)
(*  *)
(*      for use with CTL3D.DLL from Microsoft                *)
(**)

unit Ctl3D;

interface

uses WinTypes;

const CTL3D_BUTTONS            = $0001;
            CTL3D_LISTBOXES        = $0002;
            CTL3D_EDITS                = $0004;
            CTL3D_COMBOS              = $0008;
            CTL3D_STATICTEXTS    = $0010;
            CTL3D_STATICFRAMES = $0020;
            CTL3D_ALL                    = $ffff;

function Ctl3dGetVer : WORD;
function Ctl3dSubclassDlg(HWindow : HWND; Ctrls : WORD) : bool;
function Ctl3dSubclassCtl(HWindow : HWND) : bool;
function Ctl3dCtlColor(DC : HDC; Color : TColorRef) : HBrush; {ARCHAIC,
use Ctl3dCtlColorEx}
function Ctl3dEnabled : bool;
function Ctl3dColorChange : bool;
function Ctl3dRegister(Instance : THandle) : bool;
function Ctl3dUnregister(Instance : THandle) : bool;
function Ctl3dAutoSubclass(Instance : THandle) : bool;
function Ctl3dCtlColorEx(Message, wParam : WORD; lParam : LONGINT)

: HBrush;

implementation

function Ctl3dGetVer;              external 'Ctl3d' index 1;
function Ctl3dSubclassDlg;    external 'Ctl3d' index 2;
function Ctl3dSubclassCtl;    external 'Ctl3d' index 3;
function Ctl3dCtlColor;          external 'Ctl3d' index 4;
function Ctl3dEnabled;            external 'Ctl3d' index 5;
function Ctl3dColorChange;    external 'Ctl3d' index 6;
function Ctl3dRegister;          external 'Ctl3d' index 12;
function Ctl3dUnregister;      external 'Ctl3d' index 13;
function Ctl3dAutoSubclass; external 'Ctl3d' index 16;
function Ctl3dCtlColorEx;      external 'Ctl3d' index 18;
end.

Test3D.PAS

(**)
(*      Test3D  *)
(*  *)
(*      Copyright (c) 1993 by A. Furrer                            *)
(**)

program Test3D;

{$R test3d.res}

uses WinTypes, WinProcs, WObjects, Ctl3d;

type
      Applikation =
            object(TApplication)
                  procedure InitMainWindow; virtual;
            end;

      PMainwindow = ^TMainwindow;
      TMainwindow =
            object(TWindow)
                  procedure WMLButtonDown(var Msg : TMessage); virtual

wm_first + wm_LButtonDown;
            end;

procedure TMainwindow.WMLButtonDown;
begin
    Application^.ExecDialog(NEW(PDialog,Init(@Self,'Test3D')));
end;

procedure Applikation.InitMainWindow;
begin
    MainWindow := New(PMainwindow, Init(nil, 'Test3D'));
end;

var Prg : Applikation;

begin
      Ctl3dRegister(HInstance);
      Ctl3dAutoSubclass(HInstance);

      Prg.Init('Test3D');
      Prg.Run;
      Prg.Done;

      Ctl3dUnregister(HInstance);
end.

Visual Basic

Accessing I/O ports 94-02-25
In order to access I/O ports from Visual Basic, download the file inpout.zip from the ftp
site ftp.cica.indiana.edu.

Allowing user interaction in tight loops 92-12-20
If your application uses a tight loop to perform calculations (or do ther things), you
should call DoEvents() from within your loop to allow the user to activate other
applications    or to press the Cancel button in your application.

Animating the icon 92-12-20
To animate the icons, use a timer control (which is disabled when the form is not
minimized), and change the value of the form's icon property as required.

Calling GetPrivateProfileString() from Visual Basic 93-04-30
You can call GetPrivateProfileString() (and the other Profile functions) the same way as all
other API functions, but with one caveat: you must prefill the string with blanks prior to
calling the function.

For example,

IniFile = "IniFileName"
Section = "SectioName"
Key = "KeyName"
Default = ""
NumChars = 70
ReturnString = String$(NumChars, " ")

A% = GetPrivateProfileString(Section, Key, Default,
ReturnString, NumChars, IniFile)

Creating controls at runtime in Visual Basic 92-11-15
To create controls dynamically, you need to create a control array at design time.    You
can then extend it at runtime, and specify new properties for the new controls you have
created.

Disabling automatic variables in Visual Basic 1.0 93-01-20
In the tradition of Basic, Visual Basic allows you to use variables which have not been
explicitly declared.    Unfortunately there is no option to disable this "feature" in Visual
Basic 1.0.    You can alleviate some of its effects by including a line such as

DefStr A-Z
in all your modules.    This means that Visual Basic will assume all your variables are
strings unless explicitly declared, catching at least some typos in your code.

Disabling automatic variables in Visual Basic 2.0 93-04-25
In the tradition of Basic, Visual Basic allows you to use variables which have not been
explicitly declared.    In Visual Basic 2.0 (both Standard and Professional), you can disable
this feature by either using the Option Explicit statement at the module level, or
everywhere by checking the Require Variable Declaration in Options » Environment.

Displaying a timed About box 93-04-30
To display a timed About box or copyright notice, use a code fragment similar to the one
shown below:

AboutBox.show
Delay! = Timer + 2

Do
        Junk% = DoEvents()
Loop Until Delay! > Timer

Unload AboutBox

Finding previous instance of a Visual Basic application 93-05-05
The following technique is based on the Visual Basic Professional Edition knowledge base
article    Q75641; consult that article for more details.

Declare Function GetModuleHandle Lib "Kernel" (ByVal lpProgramName As Integer)
As Integer

Declare Function GetModuleUsage Lib "Kernel" (Byval hProgram As Integer)
As Integer

Sub MainForm_load
        Dim hw as Integer

        hw = GetModuleHandle("APPNAME.EXE")
        If (GetModuleUsage(hw) > 1) Then
                MsgBox "This program is already running!", 16
                End 'Will kill this instance and leave the running one intact
          End If
End Sub

With Visual Basic 2.0, you can also check the App.PrevInstance property in the   
Form_Load procedure to determine whether a previous instance is already running.    If
you want to switch to that previous instance, though, you will need to use code similar to
the one above.

Passing a structure back to Visual Basic from a DLL
The following description is courtesy of Todd Ogasawara, 1991 (reachable at
todd@pinhead.pegasus.com).    The code fragments were developed and tested using
Borland C++ 2.0 and Microsoft Visual Basic 1.0.

· Define a type that is a pointer to a structure.
typedef struct {

long        fsize;                    // file size in bytes
char        ftime[25];            // last file access time string

} * fileStruct;

· Sample function prototype declaration.
int FAR pascal FileInfo(char filename[], fileStruct);

· Sample DLL C function that receives a filename in a char array from Visual Basic and
passes back file size (long) and file modification date (char array) in a structure.

// Get file info (access time & size)
int FAR pascal
FileInfo(char filename[], fileStruct far fileinfo)
{

struct stat statbuf;
FILE      *stream;
if (!(stream = fopen(filename, "r"))) {

return(-1); // ERROR: cannot find named file
} else {

fstat(fileno(stream), &statbuf);
fclose(stream);

}
/* file size */
fileinfo->fsize = statbuf.st_size;                   
/* access time */
strcpy(fileinfo->ftime,ctime(&statbuf.st_ctime));
return(0);

}

· Declare a Visual BASIC "user-defined type" (i.e., a "structure") that matches the
structure declared in the DLL C code. See pages 260-261 of the Microsoft Visual
BASIC Programmer's Guide for more information about user-defined types.

' type (structure) definition in GLOBAL.BAS
Type FileStruct

Fsize As Long
Ftime As String * 25

End Type

· Declare the function in your GLOBAL.BAS (or whatever you named the file you keep
global information in). In this example a function is declared since the DLL C function
returns a -1 to indicate an error and a 0 to indicate success. Note that the filename is
passed from Visual BASIC to the DLL C function by value (ByVal) while the data in the
DLL C structure is passed to Visual BASIC by reference (As). See pages 379-387 of the
Microsoft Visual BASIC Programmer's Guide for more information about declaring and
calling DLL routines.

' declaration in GLOBAL.BAS
Declare Function FileInfo Lib "dosdll.dll" (ByVal FileName$,

FileInf As FileStruct) As Integer

· Example of using the DLL function 'FileInfo' in Visual BASIC.
If (Myfile.Filename = "") Then

Exit Sub
Else

ThisFileName$ = UCase$(Myfile.Filename)
End If
FileStatus% = FileInfo(ThisFileName$, FileStat)
ThisFileSize$ = Format$(FileStat.Fsize, "###,###,###") + "

bytes" ThisFileStat$ = Left$(FileStat.Ftime, 24)

Right mouse clicks on command buttons 92-12-15
Visual Basic command buttons do not process right mouse clicks, nor mouse up or down
events.    To use the right mouse button with a command button, replace the command
button with a picture control (use two bitmaps, one for "up" and the other for "down"),
which does process these events.

Using Return to move ot the next input field 93-04-30
If you wish to use the Return key to move to the next field (against the Windows user
interface guidelines, but expected by many users), you simply need to trap the keys in
each control.    For example, if you have an array of eight edit controls called InputField,
you should define a routine like this:

InputField_KeyPress(Index as Integer, KeyAscii as Integer)

If (KeyAscii = 13) Then
        If (Index = 7) Then
                InputField(0).SetFocus
        Else
                InputField(Index + 1).SetFocus
        End If
        KeyAscii = 0
End If

End Sub

Using Visual Basic strings in a DLL 93-01-20
To access Visual Basic strings in a DLL, you need to use the functions provided in the
Control Development Kit (CDK).    You can purchase the CDK separately, but it is also
included as part of Visual Basic 2.0 Professional Edition.

As an alternative, passing a Visual Basic string to a DLL as ByVal will automatically
convert it to the usual null-terminated ASCII format.    However, this will limit the length
of the string to 255 bytes.

Visual Basic and Fortran
If you want to use Visual Basic to build a slick interface for your old text-based Fortran
code, the approach to take is to build the Fortran code into a DLL, and call it from Visual
Basic.    You may either pass the parameters as arguments, or you may want to construct
a temporary file for more extensive input.

Visual C++

Memory requirements 94-02-22
Microsoft says that Visual C++ requires 6 MB of memory, and theyre not kidding.    Dont
attempt to get any work done with 4 MB.    Better yet, do yourself a favor and get at least
8 MB if you want to be productive.   

If you have relatively limited memory available, you should also specify a large
permanent swapfile, probably on the order f 8 MB to 10 MB.

Integrating external makefiles with VC++ 94-02-22
Visual C++s built-in project files are quite limited, and unable to handle thigs such as
clean targets and external (non-VC++) commands.    However, switching to an external
makefile will not allow you take advantage of VC++s capabilities such as automatic
dependency scanning.

The workaround is to create a second makefile, say, "makefile", in the same directory as
your project, and then place in the makefile the line

!include "project.mak"
as well as all the additional targets that you may need.    Then add nmake with the
appropriate file argument to the Tools menu, and youre ready to use the full power of
makefiles.    You can either ask Visual C++ to ask for an argument to this menu item, or
you can add multiple menu items for the various targets you may need.

Using version control from Visual Workbench 94-02-22
While the Visual Workbench is not particularly flexible, its fairly easy to add basic version
control capabilities to it.    For example you could add the following item to the Tools
menu:

Command Line: co
Menu text: Check Out
Arguments: $FileName
Initial directory: $FILEDIR

If you require something more advanced, you can substitute a batchfile or shell script for
the command line.

Interfacing to the outside world

Communicating with DOS applications

Clipboard access from DOS applications 93-04-30
If your DOS applications run with MS-DOS 5.0 or higher, they can access the Windows
clipboard (within a Windows DOS session) by using the new function calls in DOS 5.   
These function calls are described in the Microsoft MS-DOS Programmer's Reference
(ISBN 1-55615-546-8, Microsoft Press, $ 27.95).

Determining whether a task is a DOS task 93-01-20
To determine whether a particular task is a DOS session, you can use the following
function, as contributed by Blake Coverett (blakeco@microsoft.com).

BOOL
IsDosTask(HTASK hTask)
{
        TASKENTRY te = {sizeof(TASKENTRY)};

        if (!IsTask(hTask))
                return FALSE;

        TaskFindHandle(&te, hTask);
        return(!lstrcmp(te.szModule, "WINOLDAP"));
}

Passing commandline parameters to DOS applications 93-01-20
The standard WinExec() function will not pass any commandline parameters to the
application you are starting.    In order to pass parameters, you need to use the
ShellExecute() function contained in shell.dll, which is a part of the Windows 3.1 SDK.

Passing a pointer to a DOS application or TSR 92-09-15
In order to pass a pointer to a DOS application (to share memory), you can not just pass
a Windows pointer.    GlobalLock() returns a segment selector table entry, not a physical
address.    Thus, the simple code below will give you an incorrect address:

lpBuffer        = GlobalLock(hBuffer);
InRegs.x.di = FP_OFF(lpBuffer);
SegRegs.es    = FP_SEG(lpBuffer);
int86x(0x7f,&InRegs,&OutRegs,&SegRegs);

The problem is that the TSR or DOS application runs in real mode, while Windows
applications running in Standard or 386 Enhanced mode use selectors [LDT] and not
pointers[SEG:OFF] to access memory.

The following gives an outline of what needs to be done, courtesy of Glenn Boozer
(glenn@imagen.com):

To send a pointer to DOS [a Segment:Offset address, not a protected mode selector]
· DosAllocate a memory buffer    [This will be a buffer in the first 640K of address

space.    This buffer is locked and will not move.    [Not recomended by Microsoft]
· Copy the data from the buffer that is in "Windows Application space" into the DOS

Buffer
· Get the Segment and Offset of the DOS buffer and pass that to the TSR.
· Release the DOS Buffer

To use a pointer [Segment:offset] you got from a DOS application:
· Allocate a Selector [Not recomended by Microsoft]
· Set the selector base and length with the data returned from the TSR.    [Not

recomended by Microsoft]
· Use the data
· Release the selector.    [Not recomended by Microsoft]

Selected code fragments follow.

// Windows kernel calls not in WINDOWS.H
WORD    FAR PASCAL SetSelectorBase(HANDLE hSelector, DWORD dwBase);
WORD    FAR PASCAL SetSelectorLimit(HANDLE hSelector, DWORD dwLimit);
DWORD FAR PASCAL GlobalDosAlloc(DWORD);
WORD    FAR PASCAL GlobalDosFree(WORD);

HANDLE FAR PASCAL
GetPhysicalMemoryHandle()
{
        HANDLE hSel;
        HANDLE hSel2;

        /*. create a selector for use by MakePhysicalMemoryPtr() */
        /* The how of this is taken from an SR response. */
        if ((hSel2 = GlobalAlloc(GMEM_FIXED,(long) 64)) != NULL) {
                hSel = AllocSelector(hSel2);
                GlobalFree(hSel2);
        } else {
                hSel = (HANDLE)NULL;
        }
        return hSel;

}

LPSTR NEAR PASCAL
MakePhysicalMemoryPtr(WORD wMemHandle, WORD wSegment, WORD wOffset)
{
        /*. set selector base from wSegment parameter */
        SetSelectorBase(wMemHandle, (((LONG)wSegment)<<4) + wOffset);
        /*. set limit for 4K bytes accessable */
        SetSelectorLimit(wMemHandle,(long) 0x0FFF);
        /*. make and return a long pointer using passed wMemHandle */
        return (LPSTR)MAKELONG(0, wMemHandle);
}

void FAR PASCAL
FreePhysicalMemoryPtr(LPSTR lpMemPtr)
{
        FreeSelector(HIWORD(lpMemPtr));
}

Main code fragment:

// Assuming protected mode
if (!(hPhysMemHandle = GetPhysicalMemoryHandle())) {
        MessageBoxOKHand((LPSTR) "Error: Could not get "
  "physical memory for TSR");
        return;
}

// [call tsr-calling routine n times]

// Return the handle we allocated
FreePhysicalMemoryPtr(lpPhysPtr);

TSR-calling routine:

static FPTR      near fp;

lpsDosParagraphSelector.d =
                            GlobalDosAlloc((DWORD)max(APImsg.len, 4));
if(APImsg.buffer) {
        lmemcpy((LPSTR)MAKELONG(0, lpsDosParagraphSelector.w.sel),
  APImsg.buffer, max(APImsg.len, 4));
        fp.w.sel = lpsDosParagraphSelector.w.par;
        fp.w.off = 0;
} else {
        /* Null Pointer */
        fp.p = 0L;
}
dx = fp.w.sel;
bx = fp.w.off;

// Call the TSR
rc = int2f(ax, cx, si, di, dx, bx, (unsigned int far *)&di,

                    (unsigned int far *)&si, (unsigned int far *)&cx,
                    (unsigned int far *)&dx, (unsigned int far *)&bx);

(void) GlobalDosFree(lpsDosParagraphSelector.w.sel);
lpPhysPtr = MakePhysicalMemoryPtr(hPhysMemHandle, dx, bx);
fp.p = lpPhysPtr;

Starting a Windows application from a DOS session 92-09-15
This is really quite difficult, and you may be happier using an existing implementation
(such as wx and wxserver, which comes with the Windows 3.1 SDK), because in
386Enhanced mode the DOS application and the Windows world are in separate virtual
machines; the only context they have in common is the underlying DOS.    The basic idea
is to use a TSR that
talks to both the DOS app and a Windows "wrapper" app that does the WinExec() for you.
Thanks for the explanation are due to Ed Schwalenberg (ed@odi.com).

Create a TSR that gets loaded before Windows is started.    Its services will be available to
both DOS apps and Windows apps.    When Windows is started, your wrapper program
can call the TSR with an INT 2F, giving it the address of some GlobalDOSAlloc()'ed
memory which will be used to pass information back and forth between the TSR and
protected-mode Windows.    While processing this INT 2F, you issue one of your own, with
AX=1683h, which will return in BX the magic number of the Windows virtual machine
(VxD), which is currently 1 but may change.

The DOS application issues an INT 2F, passing the name of the desired application to the
TSR.    The TSR copies the information into a private data buffer in the TSR's address
space, NOT to the GlobalDOSAlloc()'ed memory (which only exists in the Windows virtual
machine).

Now for the hard part.    You need to call back to Windows when the Windows VM is
scheduled.    To do that, use INT 2F, AX=1685h, BX=Windows VM number which you
saved from the initialization step, CX=flags, DS:SI= priority boost and ES:DI=CS:IP of a
procedure to call.    When the Windows VM is scheduled, your procedure will be called.   
That procedure can copy the name of the application into the GlobalDOSAlloc()'ed
memory, issue an INT 2F to the windows wrapper program, and IRET.    The windows
wrapper program can use the data in the GlobalDOSAlloc()'ed memory to WinExec() the
desired program.

Multimedia

Checking for a sound card 93-04-30
To find out whether the system your application is running on has a sound board and the
appropriate drivers installed is to call midiOutGetNumDevs() for MIDI drivers and/or
waveOutGetNumDevs() for wave drivers.    A nonzero result indicates that you can access
the respective type of sound card.

MIDI file format 92-10-07
To find out how to get a copy of the latest MIDI file standard as well as other MIDI-related
documentation, send an email message to mail-server@cs.ruu.nl, with the following
contents:

BEGIN
PATH <insert-your-internet-address-here>
HELP
send MIDI/INDEX
END 

Playing sounds from Visual Basic 92-09-28
First, you can execute MCI commands by calling the Windows API:
 

Declare Function mciExecute Lib "MMSystem" (ByVal xstr$)
                As Integer

Sub Form_Click ()
        x% = mciExecute("Play c:\windows\ding.wav")
End Sub 

 
If all you want to do is play sounds, there is an alternative:
 
Declare Function sndPlaySound Lib "MMSYSTEM" (ByVal snd$, ByVal f%)
                As Integer

Sub Form_Click ()
        x% = sndPlaySound("chime.wav", 0)
End Sub
 
The second argument determines whether the system waits until the sound is finished
before returning from the call (0) or returns immediately while the sound is playing (1).     

RIFF (DIB, MIDI, RTF and WAV) file formats 93-01-20
The sound file formats are described in the document sound10.txt, available by ftp
from oak.oakland.edu, directory /pub/misc/sound.   

Microsoft's original Resource Interchange File Format (RIFF) descriptions (including WAV,
MIDI, DIB and RTF) are available by ftp from ftp.uu.net, directory
/vendor/microsoft/multimedia, under filenames riffmcir.zip (original spec, RTF format),
riffmcit.zip (original spec, text format) and riffnew.zip (additions to the spec, RTF
format).    They are also available on Compuserve's WINSDK forum, using truncated 6-
character filenames.

They are also available, free of charge, (in paper form) from Microsoft's Developer
Services by phoning 800-227-4679, x11771.

Using an accurate timer 92-10-06
The standard Windows (and PC) timer is only accurate to a disappointing 18ms.    If you
need a more accurate timer, you should investigate the Windows 3.1 multimedia API,
and specifically look at the functions timeBeginPeriod, timeEndPeriod and timeSetEvent.

Miscellaneous

Program Manager DDE interface 93-04-30
The recommended way of adding applications to Program Manager is to use the DDE
interface supported by Windows 3.1 and Windows NT; this is documented both in the
SDK reference and in the online help under "Shell Dynamic Data Exchange Overview".

Program Manager group file format 93-05-08
The Program Manager group file format is documented in the Windows 3.1 SDK
reference, volume 4, "Resources", which is included with the SDK, and available
separately from Microsoft Press.

You should not read or write these files directly for future compatability; use the Program
Manager DDE interface instead.

TWAIN interface specifications 93-04-30
To get the TWAIN scanner interface specifications, call 800-722-0379 (or call 206-628-
5737 and request document 9154 for a faxed order form), or write to:

StarPak, Inc
237 22nd Street
Greeley, CO    80631

The specifications cost approximately $30.

Putting it all together

Compiling and linking

Emulator vs. alternate floating-point math
The alternate math package is faster on non-x87 machines, but slower on those
equipped with a math chip.    Depending on your application, you might want to ship
either, or both.    If you need accuracy in floating-point calculations, though, stay away
from the alternate math package.

Borland C++ does not support the alternate math package, but it does have a "fast
floats" option, which is roughly equivalent.

Emulator floating-point: corrupted code segments
Compiling a Windows application with emulator floating-point causes corrupted code
segments when running on a non-8087 equipped system in Windows 2.x and Windows
3.0 Real mode.

The emulated floating point tries to used the coprocessor. When it does not find one on
startup, it patches the code to use the software floating point. Patching does not,
however, recalculate the code-segment checksum, thus the Windows debugging kernel
chokes when it finds that something terrible must have happened to the code.    (This
problem does not affect Windows 3.x in Standard or 386 Enhanced modes.)

You can get Windows to ignore the checksum errors by setting
EnableSegmentChecksum=0 in the [debug] section of win.ini; the problem only affects
debugging versions of Windows 3.0.

Exporting CDECL functions 92-09-28
If you specify functions to be exported in the .def file, the linker will assume that they
use the Windows standard Pascal calling convention.    If you didn't declare some of them
as PASCAL, you will need to specify those functions in the .def file as _funcname instead
of funcname, since C compilers always add an underscore to the front of a name.

Large memory model: why or why not? 93-04-30
Yes, you can do it.    There are several problems with using large model, though:
· Your program's data memory will be fixed in real mode.    Effectively, your application

will cripple any real-mode Windows system.    (Of course, this problem doesn't exist
with Windows 3.1!)

· Your application will be somewhat larger and run somewhat more slowly, since all
your data must be accessed through far pointers.    The difference may or may not be
significant for your particular application; your best choice is to attempt both medium
and large models (if possible), and checking the differences in actual executable size
and execution speed.

· You may only be able to have one instance of your application active at any one time.
This restriction is imposed by Windows on applications with multiple static data
segements: in large model, that means most applications generated with C or C++.   
Borland C++ 3.0+ and Microsoft C/C++ 7.0 will attempt to keep your static and
global data in a single segment (although Microsof C5.1 and C6.0 will not), so as long
as that data does not exceed 64K, you could run multiple instances of a large-model
application created using those compilers.

You should consider very carefully before you decide that large model is the only way to
go; the preferred method is to use medium model, and to allocate far data as required.   

Another alternative is to use a compiler such as Watcom C/386 or Zortech C++ for
development; this will let you use a single 4GB segment, and 32-bit registers, increasing
your applications performace substantially (but limiting it to running in 386 enhanced
mode).

Finally, developing for Win32 (which encompasses both the upcoming Windows NT and
Win32s) will allow you to use the flat 32-bit memory model without the restrictions and
performance penalties associated with using a 32-bit environment on Windows 3.x.   
Starting with the large model for Windows 3.1 will probably make the transition to true
32-bit code less painful when the time comes to make the move to Windows NT or
Win32s.

Using STRICT with windows.h 93-01-20
The Windows 3.1 windows.h file implements optional strict typechecking.    You can turn
this on by adding the statement

#define STRICT
before including windows.h.    Using strict typechecking will cause the compiler to issue
warnings if you try to assign a window handle to a variable typed as HDC, for example,
as it defines all handles as distinct datatypes.    Using strict is probably a good idea to
avoid problems when moving to Windows NT and other future versions of Windows later.

Debugging

Debugger stopping at non-existent breakpoints 93-04-30
If your debugger (CodeView or TDW) is stopping at breakpoints (or Int3s) when you have
not set any breakpoints, the likely culprit is your display driver.    ATI's Ultra series drivers
are known to have this problem, due to their programmers leaving their breakpoints in
the "production" drivers.

You can correct the problem by writing down the sequence of bytes surrounding the Int3
(byte CC), exiting Windows, editing the display driver with a binary editor (such as
Norton's disk editor), searching for the byte sequence you recorded earlier, and then
replacing the CC byte with a 90 (a No-op).    As always, make a backup copy of the driver
prior to editing it with a binary editor!

Debugging a DLL with CodeView 93-04-30
First, you need to specify the DLL with an /L option on the command line.

If your .exe has debug info, CodeView will find the source.    If you do not have an .exe
with debug information and source code, CVW won't find the sources before you start.   
In this case, you will need to start CVW, hit F10 a few times to get into the application,
and then open the DLL source file, allowing you to set a breakpoint in the DLL.

Probably a better choice is to always include a call to DebugBreak() in the DLL routine
you
want to debug, or possibly in the DLL initialization.    This will stop at that point, but it will
stop inside Windows, requiring you to hit F10 a few times to return to your source code.

Dr. Watson log files 93-05-08
The Dr. Watson log shows the contents of the registers when you application crashed.   
Even if you can't use it to determine contents of the variables, you can pinpoint the
location of the crash.

Make sure you keep a copy of the .map file generated by the linker for the version
shipped to your customers; you can then look up the crash location manually from this
file when you receive a Dr. Watson log.    If you linked a version with /CO /LI, the .map file
will also contain line number information, allowing you to pinpoint the line in your
program.

You can also use the MAPSYM utility to create a .SYM file.    Dr. Watson will consult
the .SYM file if it is in the same directory as the .EXE, automatically putting meaningful
names in the Dr. Watson log.

Programmer's WorkBench and tab characters 92-09-28
If you want real tab characters inserted into your source files whenever you press Tab,
specify RealTabs:Yes and Graphic:Tab in your tools.ini file.    You can also quote a single
tab character by preceing it with Ctrl+P.

Turbo Debugger and Windows 3.1 92-09-28
TDW 2.5 and TDW 3.0 need a new version of windebug.dll; otherwise the following
error is being displayed while loading a .EXE file in the debugger:

Cannot load WINDEBUG.DLL

The new windebug.dll can be found at ftp.cica.indiana.edu in the directory
/pub/pc/win3/programr/tp as "tpwin31.zip".    TDW 2.5 still has a few problems with
Windows 3.1 (it sometimes generates exception 13 errors while stepping trough code),
but this is a workable solution.

TDW 2.51 (shipped with the Turbo Pascal for Windows 1.0 maintenance release) does
not function correctly with Windows 3.1.

TDW 3.1 (shipped with TPW 1.5 and BC++ 3.1) has been written for Windows 3.1 and
works correctly under both Windows 3.0 and 3.1.

Turbo Debugger video configuration 92-09-14
Borland's TDW debugger uses its own video drivers for single-screen Windows
debugging.    As a result, you must make sure that the debugger can find the correct
drivers.    As an example, if you are using an ATI Graphics Ultra (or Graphics Vantage),
you need to make sure the following lines are in your tdw.ini file:

[Debugger]
VideoDLL=C:\TPW15\ULTRA.DLL
 
[VideoOptions]
DebugFile=C:\TDW.LOG

Resources and resource tools

Borland C++ Windows tools and Windows 3.1 92-09-28
WinSight shipped with BC++ 3.0 does not work under Windows 3.1.    There is an update
file available at ftp.cica.indiana.edu in the directory /pub/pc/win3/programr/bcpp as
"wsupd1.zip".

Dr. Frank does not work with Windows 3.1.    This program has been reincarnated as an
official Borland tool and is shipped with BC++ 3.1 as "WinSpector".

Building a DLL with Zortech C++ 92-11-15
The key to succesfully building a DLL using Zortech C++ is to make sure that there is a
LibMain function; it appears that Borland and Microsoft compilers include it automatically.
Simply insert the following fragment into your code:

int FAR PASCAL LibMain(HANDLE hInst,      WORD wDataSeg,
  WORD wHeapSize, LPSTR lpszCmdLine)
{
}

Extracting resources from an .EXE file 93-01-06
There are at least two alternatives: Borland's Resource Workshop (included with most of
their Windows tools) allows you to extract and edit individual resources out of executable
files.    Alternately you can get a program called rx (Resource eXtractor) by ftp from
monu6.cc.monash.edu.au , in directory /pub/win3/programr.

Help compiler runs out of memory 94-02-22
If your help files are bigger than the standard help compiler can handle, get the what
toolkit (available by ftp from ftp.cica.indiana.edu), which includes a protected-mode help
compiler.

Help development tools 94-02-22
The following is a partial listing of available help development tools, thanks to Jon Noring.
All of these, except for RoboHelp, are available as either hreeware or shareware by ftp;
check ftp.cica.indiana.edu and other ftp sites.

· Collector
· Create_Help!
· Dr. Help
· Help Development Kit 9.0
· Helper
· HelpMacro
· HyperDoc
· RoboHelp
· RTF-Magic
· WHAT (Windows Help Authoring Tool)

Linking fonts into a .FON file
The linker provided with the Windows 3.0 SDK will produce the following error when
linking fonts:

Link Error L2049: no segments defined

The above LINK error is a bug in link. The fix is to run exehdr /r on the .exe file, and then
run rc on it. The Windows 3.0 SDK linker incorrectly detects an error, and marks the
resulting .exe file with some kind of error bit, even though the rest of the exe file is ok.
Exehdr /r will reset this "error bit", after which rc will work just fine.

An alternate fix is to use link4 from Windows 2.x SDK.

Running out of system resources in Visual Basic 92-09-21
Visual Basic is limited to 255 controls per form, but the real limit depends on Windows
system resources, which in turn depends on what kind of controls they are and what else
you have going on in your system at the time.    Here's a simplified explanation:

Windows does indeed give you access to many megabytes of memory (16Mb in Windows
3.0, 256Mb in 3.1).    However, some of that memory is "special" because Windows
reserves several 64K segments for its own purposes.    The most significant of these
segments for this discussion are the USER heap and the GDI heap.    This is where
Windows keeps track of many of its internal data structures -- things like window
handles, menus, (USER) and handles to bitmap, clipping regions, and fonts (GDI).    (Note
that these are handles and related data structures, not the actual menus, bitmaps, or
fonts themselves) Collectively,
these two    segments are called "Windows resources" and whichever one of    the two
that is closest to being exhausted is reported as a percentage    (of 64K) in the Help »
About dialog in Program Manager.

It should make sense then that as you approach 0% free in one of these two segments
"strange things begin to happen" because Windows can't allocate space for new
Windows or bitmaps or whatever.

It is unfortunate that there is this 64K limitation: it arises because of Windows' roots in
real mode.    Future versions (both NT and perhaps a future version of Windows for MS-
DOS) will
elminate this.    Windows 3.1 was an improvement over 3.0 because it split the single
USER heap into several 64K heaps.

Now, getting back to Visual Basic: every form is a window.    Every control is a window.   
Every window consumes some of the USER heap (some more than others).    Every
bitmap consumes some of the GDI heap; every picture box or form for which you've set
AutoRedraw = True also consumes additional space in the GDI heap.    I'm sure you can
see where this is leading: eventually, as you add controls, you run out of system
resources.    The number at which you run out depends on what the controls are (picture
controls chew up resources faster than labels), how many other forms and controls are
currently loaded in your application, and how much of your system resources are being
consumed by other
applications you may be running at that time.

How to work around this?    Only load the forms you need.    Unloaded forms (and the
controls on them) don't use system resources.    Try to reduce the number of picture
boxes.    Don't set AutoRedraw to True. If you're trying to display a lot of bitmaps or a grid
of data, consider using a custom control designed to do that.    The grid control included
in the Professional Toolkit allows you to display lots of information without using up the
system resources you would if you placed it all in text boxes or labels.

If you are running Windows 3.1 (and you really should be) you can call this function:

Declare Function GetFreeSystemResources Lib "User" (ByVal
                                  fuSysResource As Integer) As Integer

Global Const GFSR_SYSTEMRESOURCES = &H0
Global Const GFSR_GDIRESOURCES = &H1
Global Const GFSR_USERRESOURCES = &H2

This returns the percentage of free system resources For example:

Print GetFreeSystemResources(GFSR_SYSTEMRESOURCES)

This displays the lower of the GDI or USER heaps (this is exactly what is displayed in
those about boxes).    If you want to find out how much space is left in USER, use   
GFSR_USERRESOURCES; if you want to find out how much is left in GDI, use
GFSR_GDIRESOURCES.    Using this function, you can determine whether you're actually
exhausting USER (probably) or GDI (less likely, unless you have a lot of bitmaps).

Thanks for the explanation to Joe Robison (joero@microsoft.com).

Tracking down unfreed resources 92-11-15
There are several utilities available on ftp.cica.indiana.edu which will monitor the heap
and memory usage. Look for files ma.zip and ha.zip in /pub/pc/win3/utils.    The Windows
3.1 debug kernel (included with the SDK) also checks for unfreed resources when an
application exits.    Finally the Heap Walker utility can be used to identify resources in the
global heaps.

Screen savers

Creating a Windows 3.1 screen saver 93-04-30
You can create a Windows 3.1 screen saver by using the scrnsavelib library included i
nthe Windows 3.1 SDK.    The use of the library is described in Chapter 14 of the SDK
reference manual, volume 1 (Overviews).

Documentation and help

Adding bitmaps to helpfiles
When you add a bitmap to a help source document using the [bml ...] command, it
freqently does not appear in the compiled helpfile.    The problem is that the text [bml
printer.bmp] is an RTF bitmap inclusion command (which is why you want it there), but
Word assumes you really want the literal text "[bml printer.bmp]", and escapes the whole
sequence when saving the files as RTF.    Note that the previous description substitutes
square brackets for curly brackets to prevent hc from actually including those bitmaps.   
Use curly brackets in your own helpfile source!

You'll get the actual RTF bitmap inclusion command in the RTF file (and thus a bitmap in
the compiled helpfile) by inserting a bitmap using the Word for Windows menu
commands and clicking on the "Link to file" checkbox when it asks you which bitmap to
insert.

Bullets (and other special characters) in helpfiles 93-04-30
Using Word for Windows' Insert » Symbol for bullets will actually insert sybol references
into the helpfile, not actual bullet characters.    Your bullets will    show up in helpfiles if
you enter them using the numeric keypad, or paste them in from the Character Map
utility.    For example, to get the bullet, set your font to Symbol, and type Alt+0183 on the
numeric keypad.

The easiest way to determine the actual keycodes is to look up the symbols in the
Character Map utility.

Screen Snapshots
To take a snapshot of your screen, just press PrtScr, and Windows will copy the image to
the clipboard, from where you can paste it into your favourite application. You can also
use Alt+PrtScr to take a snapshot of only your active pop-up window (child windows
such as dialog controls are not counted as "active").

You may wish to select the Monochrome VGA driver prior to doing the screen print to
produce 1-bit (2-color) bitmaps for easier printing.

As an alternative, you may wish to use a screen grabber/graphics conversion utility such
as HiJaak or PaintShop Pro (see the Microsoft Windows FAQ) if you wish to produce
good-quality grayscale bitmaps..

A programmer's bibliography

Windows 3.1 SDK references 93-04-30
· Windows 3.1 Programmer's Reference, Volume 1: Overview.    Microsoft Press, 1992,

ISBN 1-55615-453-4, $ 29.95
· Windows 3.1 Programmer's Reference, Volume 2: Functions.    Microsoft Press, 1992,

ISBN 1-55615-463-1, $ 39.95
· Windows 3.1 Programmer's Reference, Volume 3: Messages and structures.   

Microsoft Press, 1992, ISBN 1-55615-464-X, $ 29.95
· Windows 3.1 Programmer's Reference, Volume 4: Resources.    Microsoft Press, 1992,

ISBN 1-55615-494-1, $ 22.95
· Windows 3.1 Guide to Programming. Microsoft Press, 1992, ISBN 1-55615-452-6, $

22.95
· Windows 3.1 Programming Tools. Microsoft Press, 1992, ISBN 1-55615-454-2, $ 29.95

· Windows Multimedia Authoring and Tools Guide. Microsoft Press, 1992, ISBN 1-55615-
391-0, $ 24.95

· Windows Multimedia Programmer's Guide. Microsoft Press, 1992, ISBN 1-55615-389-
9, $ 27.95

· Windows Multimedia Programmer's Workbook. Microsoft Press, 1992, ISBN 1-55615-
390-2, $ 22.95

· Windows for Pen Computing Programmer's Reference. Microsoft Press, 1992

Windows 3.0 SDK references
· SDK Reference, Volume 1: Functions and messages. Microsoft Press, 1990, part no.

06856
· SDK Reference, Volume 2: Resource scripts and file formats. Microsoft Press, 1990,

part no. 06857
· SDK Guide to Programming. Microsoft Press. 1990, part no. 06854
· SDK Tools. Microsoft Press, 1990, part no. 06854
· SAA CUA Advanced Interface Design Guide. IBM, 1989, part no. SC26-4582-0

Win32 (Windows NT) API references 93-04-30
· Microsoft: Win32 Programmer's Guide v.1: Systems Services and Windows

Management. Microsoft Press, 1993, ISBN 1-55615-515-8, $39.95
· Microsoft: Win32 Programmer's Guide v.2: Graphics Device Interface. Microsoft Press,

1993, ISBN 1-55615-516-6, $39.95
· Microsoft: Win32 Programmer's Reference v.1: API Functions (A-M). Microsoft Press,

1993, ISBN 1-55615-517-4, $39.95
· Microsoft: Win32 Programmer's Reference v.2: API Functions (N-Z). Microsoft Press,

1993, ISBN 1-55615-518-2, $39.95
· Microsoft: Win32 Programmer's Reference v.3: Messages, Structures and Data Types.

Microsoft Press, 1993, ISBN 1-55615-519-0, $39.95

Windows user interface guidelines
· The GUI Guide.    Microsoft Press, 1993, ISBN 1-55615-538-7, $ 29.95
· The Windows Interface: An Application Design Guide.    Microsoft Press, 1993, ISBN 1-

55615-439-9, $ 39.95.
· Windows 3.1 User Interface Guidelines.    [for Windows 3.1, Pen Windows and

Windows NT] Microsoft Press, 1992
· SAA CUA Advanced Interface Design Guide. [for Windows 3.0 and OS/2 1.x] IBM,

1989, part no. SC26-4582-0
· SAA CUA'91 Design Guide. [for OS/2 2.0] IBM, 1991, part no. SC34-4289, $10.00
· SAA CUA'91 Reference. [for OS/2 2.0] IBM, 1991, part no. SC34-4290, $18.25

Microsoft Technical Notes 93-08-13
Microsoft's Technical Notes are available on the Microsoft Developer Network CD-ROMs,
by ftp at ftp.uu.net, directory /vendor/microsoft/developer-network, or from the WINSDK
forum on CompuServe.    The following is a quick index to the numbered files available at
uunet.

File Name Description
3-1 Back Building a DLL using large model
3-2 CallB C++ class member functions as callbacks
3-3 ClsExp C++ class export syntax
3-4 NewOpr C++ new operator in large model
3-5 Owner C++ new operator in DLLs
3-6 Smart Using _fmalloc with Windows
3-7 Zusammen Using C/C++ compiler options
3-8 AppExec Launching and waiting for Windows applications
3-9 DDEExec Creating a DDE Execute server
3-10 DDERecon Creating a DDE hot link client
3-11 DDEServer Creating a DDE server
3-12 PmgrAPI DDE command string interface to Program Manager
3-13 StockSrv DDE hot links
3-14 Glyph TrueType font engine and GetGlyphOutline()
3-15 Lava Palette animation and pop-up menus
3-16 MergeDIB Merging DIBs
3-17 MultiPal Multiple palette management
3-18 TransBlt Transparent bitmaps
3-19 Tri Drawing to screen or memory DIB
3-20 TriQ Drawing to screen or memory DIB
3-21 CountDOS Combining a Windows application and a DOS TSR
3-22 WinFloat Advanced floating-point functionality in Windows
3-23 Detect Detecting presence of multimedia extensions
3-24 JoyToy Using joystick services
3-25 MMPF Reads and analyzes .MMP files
3-26 MMPlay Plays .MMP files
3-27 MMSys Using multimedia without drivers
3-28 WaveConv Converting .WAV and .RIF files
3-29 Patron OLE client
3-30 Schmoo OLE server
3-31 Ctl3D Implementing 3D dialogs and controls, a la Excel 4.0
3-32 Dialogs Using common dialogs
3-33 EdAlign Changing edit control alignment
3-34 MinMax Controlling window minimum and maximum size
3-35 StatBar Creating a status bar
3-36 Styles Using user-selected styles for a window
3-37 VList Using virtual listboxes

File Name Description
4-1 Blocks Dragging and stretching with MFC
4-2 MFCDIB DIBs with MFC
4-3 Modeless Modeless dialogs with MFC
4-4 Subclass Subclassing edit controls with MFC
4-5 BallCli DDE client using DDEML
4-6 BallSrv DDE server using DDEML
4-7 DMLClt Basic DDEML client
4-8 DMLSrv Basic DDEML server

4-9 BMUtil Bitmap techniques and utilities for MFC
4-10 DragBMP Dragging bitmaps smoothly with MFC
4-11 FADE Fading bitmaps using palette animation
4-12 GDIRsrcs Extracting resources from resource files
4-13 GDIWatch Using TOOLHELP.DLL to walk heap
4-14 RLEApp Animating with DIB RLE format
4-16 WinCap Capturing screens using DIB API
4-17 AsmClock Windows programming with MASM 6.0
4-18 Backgrnd Background processing
4-19 MakeApp Generating a Windows application
4-20 ShowGrp Reading group files
4-21 VerStamp Uses VER.DLL to get version information for a file
4-22 WinQuery Querying the SQL Server
4-23 Xtension Extension DLL for File Manager
4-24 BadApp "Bad Application" handling
4-25 DLLFloat Converting floating point to character strings
4-26 DLLSkel Medium-model DLLs
4-27 Fault Exception and Fault Trapping
4-28 Handle Validating global and local handles
4-29 MultApp Multiple instance DLL with separate data blocks
4-30 TermWait Launching a task and waiting for completion
4-31 MIDIKeyb Using the midiKeyB control
4-32 ZYZGauge Implementing a progress bar
4-33 ALCKey Uses ALC values to filter input
4-34 AnnoPrnt Annotating and printing text and ink
4-35 Annotate Adding handwriting annotation to a text file
4-36 DynBedit Changing an edit control to bedit dynamically
4-37 Grid Using pen gestures
4-38 Hotspots Reconizing gesture hotspots
4-39 Parser Mapping raw data into characters
4-40 Pressure Capturing pen pressure information
4-41 RCDump Accessing the RCRESULT Structure
4-42 View Displaying ink slowly
4-43 Health Visual Basic Pen Windows healthcare application
4-44 Insure2 Visual Basic Pen Windows Insurance application
4-45 LoanApp Visual Basic Pen Windows loan application
4-46 Receipt Visual Basic Pen Windows order application
4-47 SaleAnal Visual Basic Pen Windows forecast tracking
4-48 CollColr Changing System Colors
4-49 DynDlg Implementing a dynamic options dialog
4-50 EXEView Extracting and decoding information from an .EXE
4-51 HitTest Testing for click on an icon
4-52 HotKey Installing hotkeys
4-53 MDIDlg Using dialogs as MDI windows
4-54 SignOn Creating a sign-on screen
4-55 SysParam Using the SystemParametersInfo() function

File Name Description
10-1 AppExec Launching other Windows-based applications
10-2 BigBit Using TrueColor devices
10-3 Client OLE Client Implementation Guide 1.02
10-4 Ctl3D Adding 3-D effects to controls
10-5 CtlDlgEd Developing custom controls for the dialog editor
10-6 DDEDLL Performing DDE from a DLL
10-7 DDEHotLk Using DDE hot links

10-8 DDEOLE Supporting clipboard, DDE, and OLE
10-9 DDESysTp Supporting the DDE system topic
10-10 DevEnv Establishing a flexible development environment
10-11 DIBPal Using DIBs with Palettes
10-12 DIBs2 Using DIBs
10-13 DLLIntro Introduction to DLLs
10-14 EditCtls Edit control reference
10-15 Faults Bulletproofing functions with TOOLHELP.DLL
10-16 FontMap Windows font mapping
10-17 GDIOver2 Windows GDI overview
10-18 GetGlyph Advanced TrueType: GetGlyphOutline() documentation
10-19 Hooks Using Windows' hook functions
10-20 JSConcpt OLE: A short overview
10-21 LargeM4 Using large model
10-22 Listbox Listbox control reference
10-23 Listhrz2 Using horizontal scroll bars in listboxes
10-24 Mapping Coordinate mapping in Windows
10-25 Metafile An overview of metafiles
10-26 MinMax Usign WM_GETMINMAXINFO
10-27 MTI An overview of modules, tasks and instances
10-28 Objects Using GDI objects
10-29 PalAware Creating a palette awareness
10-30 Palette An introduction to the palette manager
10-31 Porting Porting 16-Bit Windows Applications to Win32
10-32 Primitiv Device-independent graphics primitives
10-33 Print An introduction to printing
10-34 RawDDE DDE transaction definition tables
10-35 Server OLE server implentation guide
10-36 StatBar Implementing a Status Bar
10-37 StatiCtl Static control reference
10-38 Streams OLE Streams introduction
10-39 Styles Window hierarchies and styles
10-40 Subclass Safe subclassing
10-41 T2API Using TrueType
10-42 Timer2 Timers and timing in Windows
10-43 TransBlt Transparent BitBlits
10-44 TrueType An introduction to TrueType
10-45 TSR-Supp TSR support in Windows 3.1
10-46 TT An introduction to TrueType
10-47 TTFonts Linear and nonlinear scaling
10-48 Use-Cust Using and customizing common dialogs
10-49 VLB Virtual listboxes
10-50 VxDLite A miniature DDK for creating VxDs
10-51 WEP Loading, initializing, and terminating a DLL
10-52 Win32DLL DLLs in Win32
10-53 WinFloat Floating point in Windows
10-54 PenUI Pen Windows user interface guidelines
10-55 SymbolGr Using the symbol graph
10-56 W4PRecog Moderating the Pen Windows recognition process
10-57 GraphX Graphics design and optimization
10-58 Memory Optimizing memory usage and performance
10-59 MMAware Creating multimedia-aware applications
10-60 MsftMM Microsoft multimedia document overview
10-61 OptCDRom CD-ROM design and optimization
10-62 RiffNew New multimedia types and techniques

10-63 Tech1 Multimedia technical support update
10-64 Video Multimedia video techniques
10-65 Dr_GUI1 Ask Dr. GUI # 1
10-66 Dr_GUI2 Ask Dr. GUI # 2
10-67 Dr_GUI3 Ask Dr. GUI # 3
10-68 Dr_GUI4 Ask Dr. GUI # 4
10-69 Dr_GUI5 Ask Dr. GUI # 5
10-70 Dr_GUI6 Ask Dr. GUI # 6

File Name Description
11-1 CallB C++ class member functions as callbacks
11-2 Cbl_CApp Passing parameters between C and COBOL modules
11-3 CPPDLL Exporting an entire C++ class
11-4 Draft3 Using MOVE in MS-DOS
11-5 Fangle Using new in C++
11-6 Malloc Using _fmalloc with Windows
11-7 ObjMapC Object mapping in C++
11-8 Optim Setting C/C++ compiler options
11-9 SS208 Relocatable Object Module format specification
11-10 TN0001 MFC: WNDCLASS structures
11-11 TN0002 MFC: Presistent C++ storage
11-12 TN0003 MFC: Mapping Windows handles to C++ objects
11-13 TN0004 MFC: Using template classes in C++
11-14 TN0005 MFC: Using MDI
11-15 TN0006 MFC: Using message maps
11-16 TN0007 MFC: Windows debugging and trace options
11-17 TN0008 MFC: general OLE overview
11-18 TN0009 MFC: creating OLE clients
11-19 TN0010 MFC: creating OLE servers
11-20 TN0011 MFC: creating DLLs
11-21 TN0012 MFC: using Windows 3.1 robustness features
11-22 TN0013 MFC: using standard dialog classes
11-23 TN0014 MFC: creating custom controls
11-24 TN0015 MFC: Pen Windows
11-25 TN0016 MFC: multiple inheritance
11-26 Tricks New tricks for the C/C++ compiler
11-27 BuildSwi Programmer's Workbench build switches
11-28 DLL Creating DLLs with QuickC for Windows

File Name Description
13-1 DynaComm Developing DDE applications with DynaComm
13-2 New20 New WordBasic features in Word for Windows 2.0
13-3 Prat1 Data mangement with Word for Windows and PackRat
13-4 QPlusE Data exchange with Q+E
13-5 RealTips EchoOff for WordBasic macros
13-6 TJTips Private initialization files with Word for Windows
13-6 XTalkDDE DDE with CrossTalk for Windows

Programming guides: general 93-07-30
Special notice must go to Charles Petzold's Windows bible, which is shown first.    All
other Windows programming guides are listed alphabetically by author.
· Petzold, Charles: Programming Windows, 3rd edition (with disk).    Microsoft Press,

1990, ISBN 1-55615-395-3, $49.95 (with 3.5" disk)

· Baer, Jürgen: Introduction to WIndows 3.1 Programming.    Abacus, 1992, $ 34.95
· Baer, Jürgen: Windows 3.1 Intern (with disk).    Abacus, 1992, $ 49.95
· Clark, Jeffrey: Windows Programmer's Guide to OLE/DDE (with disk).    SAMS, 1992, $

34.95
· Custer, Helen: Inside Windows NT. Microsoft Press, 1992,    ISBN: 1-55615-481-X
· Farrell, Tim: Programming in WIndows 3.1, 2nd edition (with disk).    Addison-Wesley,

1992, $29.95
· Kauler, Barry: Windows Assembly Language and Systems Programming. Prentice Hall,

1993.
· Klein, Mike: Windows Programmer's Guide to DLLs and Memory Management    (with

disk).    SAMS, 1992, $ 34.95
· Heller, Martin: Advanced WIndows Programming.    John Wiley & sons, 1992, ISBN 0-

471-54711-5, $ 32.95
· Leavens, Alex: Windows Programmer's Guide to Resources (with disk).    SAMS, 1992,

$ 34.95
· McCord, James: Windows 3.1 Programmer's Reference.    Que, 1992, $ 39.95
· Microsoft: The GUI Guide.    Microsoft Press, 1993, ISBN 1-55615-538-7, $ 29.95
· Monk. Tim: Windows Programmer's Guide to Serial Communications., SAMS, 1992,

ISBN 0-672-30030-3,    $ 39.95
· Myers, Brian and Chris Doner: Programmer's Introduction to Windows 3.1 (with disk). 

Sybex, 1992, ISBN 0-7821-1034-7, $ 34.95
· Norton, Peter and Paul Yao: Windows 3.1 Power Programming Techniques. Bantam

Books, 1992, $29.95
· Rector, Brent: Developing Windows 3 Applications Microsoft Windows SDK.    SAMS,

1992, $ 29.95
· Richter, Jeffrey M.: Windows 3: A Developer's Guide (with disk). M&T Books, 1991,

ISBN 1-55851-164-4
· Southerton, Alan: Windows 3.0 Programming Primer (with disk).    Addison-Wesley,

1990, $ 34.95
· Wilken, Peter: Windows System Programming (with disk).    Abacus, 1991, $ 39.95
· Wilton, Richard: Microsoft Windows 3 Developer's Workshop. Microsoft Press, 1991,

$24.95
· Windows 3.1 Developer's Workshop).    Microsoft Press, 1992, ISBN 1-55615-480-1, $

34.95

Programming guides: class libraries 93-01-22
· Dilascia, Paul: Windows++.    Addison-Wesley, 1992, $29.95
· McCord, James: Developing Windows Applications With Borland C++ 3.0, SAMS,

1992, ISBN 0-672-30231-4, $ 39.95.
· Norton, Peter and Paul Yao: Borland C++ Programming for Windows. Bantam Books,

1992, $29.95
· Roetzheim, William: Programming Windows with Borland C++.
· Shammas, Namir: Windows Programmer's Guide to Object Windows Library (with

disk).    SAMS, 1992, $ 34.95
· Shammas, Namir: Windows Programmer's Guide to Microsoft Foundation Classes

(with disk).    SAMS, 1992, $ 34.95
· Heiny, Loren: Windows Graphics Programming with Borland C++.    Wiley, 1992, $

29.95

Programming guides: device drivers and internals 93-07-30
· Custer, Helen: Inside Windows NT. Microsoft Press, 1993, ISBN 1-55615-481-X, $24.95
· Norton, Daniel A.: Writing Windows Device Drivers. Addison-Wesley, 1991, $29.95
· Kauler, Barry: Windows Assembly Language and Systems Programming. Prentice Hall,

1993.
· Schulman, Andrew: Undocumented Windows (with disk).    Addison-Wesley, 1992, $

39.95

Programming guides: Visual Basic 93-04-30
· Nelson, Ross: Running Visual Basic for Windows.    Microsoft Press, 1993, ISBN 1-

55615-477-1, $ 22.95
· Visual Basic How-To.    Waite Group Press, 1992
· Young, Michael J.: Visual Basic    Game Programming for Windows.    Microsoft Press,

1992, ISBN 1-55615-503-4, $ 39.95

Programming guides: macro languages 93-01-22
· Borland, Russell: Word for Windows Macros.    Microsoft Press, 1992, ISBN 1-55615-

486-0, $ 34.95
· Kyd, Charles W., and Chris Kinata: Microsoft Excel Macros.    Microsoft Press, 1992,

ISBN 1-55615-526-3, $ 29.95
· Leonhard, Woody: Windows 3.1 Programming for Mere Mortals.    Addison-Wesley,

1992, $ 34.95
· The Power of Word 2 for Windows macros.    MIS Press, 1992

Magazines 92-09-21
· BasicPro Magazine

299 California Ave. S120, Palo Alto, CA 94306-1912
(415) 688-1808
Not Windows-specific, but with extensive Visual Basic coverage

· Dr. Dobbs' Journal
411 Borel Ave., San Mateo, CA 94402-3522
(800) 456-1215, (303) 447-9330
Technical.    Moderate Windows coverage.

· Inside Visual Basic
9420 Bunsen Parkway, suite 300, Louisville, KY 40220
(800) 223-8720, (502) 491-1900

· Microsoft Systems Journal
501 Galveston Dr., Redwood City, CA 94063
(415) 366-3600
Technical.    Extensive Windows coverage.

· Windows Magazine
600 Community Community Dr., Manhasset, NY 11030
(800) 248-3584, (303) 447-9330
Non-technical.

· Windows/DOS Developer's Journal
2601 Iowa Rd., Lawrence, KS 66046
(913) 841-1631
Technical.    Good Windows coverage.

Microsoft Developers' Network 93-04-30
The Microsoft Developers' Network subscription includes a bimonthly newsletter with
some useful information, as well as a CD-ROM subscription, packed with source code
samples, technical notes, all the free SDKs (such as MAPI and LSAPI), Microsoft Systems
Journal sources, Microsoft Knowledge Bases for their development tools and a complete
version of Charles Petzold's Programming Windows online.

While the subscriptions are not cheap at $199/year, no professional Windows
programmer (read: anyone making a living programming for Windows) should be without
one.    You will quickly make back the cost with higher productivity.

Magazine source code availability 93-04-30
· Dr. Dobbs' Journal

simtel20.army.mil, wuarchive.wustl.edu
Also available on CompuServe

· Microsoft Systems Journal
simtel20.army.mil, wuarchive.wustl.edu (old issues only)
Also available on Microsoft OnLine and CompuServe
Also available on the Microsoft Developers' Network CD-ROM

· Windows/DOS Developer's Journal
ftp.uu.net: /published/windowsdos/19YY/monYY.zip

